-
In this article, a fault location technique based on artificial neural networks (ANN) for Terminal-Hybrid LCC-VSC-HVDC has been assessed and scrutinized. As is known, in conventional HVDC systems (LCC-based and VSC-based HVDCs), the same type of filter is used on both sides due to the use of similar converters in both sender and receiver terminals. In this article, it is concluded that due to the use of two different types of converters at the both ends of the utilized Terminal-hybrid LCC-VSC-HVDC system, and the use of different DC filters on both sides, fault location using positive and negative pole currents of the rectifier side has much better results than the rest of input signals. Therefore, it will be finalized that by increasing and designing suitable DC filters on the transmission line of HVDC systems, fault localization matter will be remarkably and surprisingly facilitated. Nowadays, the fault location of HVDC transmission lines with a value of more than 1% is generally discussed in most articles. In this research, the fault location with a value of 0.0045%, i.e., a distance of 22.5 meters from the fault point in the most satisfactory case is obtained, which shows the absolute feasibility of the ANN along with the wavelet transform. To validate the proposed method, a ±100 KV, Terminal-hybrid LCC-VSC-HVDC system is simulated via MATLAB. The outcomes verify that the proposed technique works perfectly under various fault locations, resistances, and fault types.
Keywords: Fault Location, High Voltage Direct Current, Hybrid-High Voltage Direct Current, Artificial Neural Network, Wavelet Transform -
امروزه رشد صنعت و بار به معنی افزایش نیاز شتابدار به انرژی الکتریکی بوده که برای تامین آن باید بسترهای انتقال توان مهیا باشد. به همین دلیل، استفاده از سیستم های انتقال توان با ظرفیت بالا یکی از مواردیست که امروزه در ساختارهای برق دنیا رشد چشمگیری داشته است. در میان این سیستم ها، سیستم های انتقال توان HVDC و EHVAC به دلیل قابلیت هایی که دارند، از محبوبیت دوچندانی برخوردار هستند. سیستم هایی که بر طبق مطالعات انجام شده برای فواصل طولانی مقرون به صرفه می باشد، نگرانی های زیادی را برای بهره برداران سیستم قدرت ایجاد کرده است. از منظر قابلیت اطمینان، رخداد خطا در سیستم انتقال توان با ظرفیت بالا (مانند HVDCها) موجب از دست رفتن ظرفیت زیادی در شبکه انتقال شده که می تواند بر عملکرد این سیستم تاثیر مخرب داشته باشد. با این توصیفات نیاز است که عملکرد سیستم های انتقال توان با ظرفیت بالا از منظر قابلیت اطمینان سنجیده شود. در این مقاله به مقایسه قابلیت اطمینان سه تکنولوژی روز دنیا (EHVAC و HVDC-VSC و HVDC-LCC در ساختارهای مختلف) به کمک روش شمارش حالات خطا پرداخته می شود. بدین منظور ابتدا مدل خطاها به کمک مدل مارکوف استخراج شده و نرخ معادل رخداد خطا و احتمال رخداد خطا به دست آمده و از این داده ها برای اعمال خطا گذاری روی همه المان ها استفاده گردیده است. به کمک مقایسه این سیستم ها می توان سیستم مناسب جهت انتقال توان با ظرفیت بالا را انتخاب نمود. با انجام بررسی فوق نشان داده خواهد شد که از منظر نرخ خروج و احتمال خروج، تکنولوژی EHVAC، از منظر مدت زمان قطعی نیز تکنولوژی LCC دارای عملکرد مناسب تری است. همچنین تکنولوژی VSC رفتار میانه ای در هر یک از فاکتورهای ذکر شده دارد و نمی توان عنوان کرد که یک تکنولوژی به طور قطع از تکنولوژی دیگر بهتر است.
کلید واژگان: قابلیت اطمینان, سیستمهای HVDC-VSC, سیستمهای HVDC-LCC, سیستمهایEHVAC, روش شمارش حالات خطاImplementation of high-capacity power transmission systems in power systems is a growing trend. Among these systems, HVDC and EHVAC power transmission systems are the most popular because of their capabilities and their low investment costs over the long distances. Despite of the mentioned advantages, the reliability of the high-capacity power transmission has been a major concern for power system operators. In terms of reliability, the occurrence of an error in a high-capacity power transmission system (such as HVDCs) causes a large loss of capacity in the transmission network, which can have a major effect on the performance of this system. Therefore, reliability assessment of high-capacity power transmission systems is necessary. In this paper, the reliability level of three modern technologies (HVDC-VSC, HVDC-LCC and EHVAC in different structures) is compared. By comparing these systems, the most proper system for high-capacity power transmission from the reliability viewpoint can be selected.
Keywords: Reliability assessment, HVDC-VSC systems, HVDC-LCC systems, EHVAC systems, FMEA -
This paper presents a valued-based approach to select system enhancement alternatives based on the proposed system well-being analysis technique. The technique is used to rank the various system enhancement alternatives for an existing HVDC system. The system health states are classified according to three operating states namely، healthy، marginal and at risk. The reliability health indices with various improvement options are calculated for the HVDC transmission. The reliability health indices are then recalculated by including the outages of the generation. The options are then ranked according to their reliability benefits and their costs.
Iranian Journal of science and Technology (B: Engineering), Volume:32 Issue: 3, june 2008, PP 223 -234This paper presents a valued-based approach to select system enhancement alternatives based on the proposed system well-being analysis technique. The technique is used to rank the various system enhancement alternatives for an existing HVDC system. The system health states are classified according to three operating states namely, healthy, marginal and at risk. The reliability health indices with various improvement options are calculated for the HVDC transmission. The reliability health indices are then recalculated by including the outages of the generation. The options are then ranked according to their reliability benefits and their costs.
-
چکیده: امروزه، از برق DC با ولتاژ زیاد (HVDC) به دلایل مزایای زیست محیطی، صرفه اقتصادی در فواصل زیاد، کنترل دقیق توان، پایداری و کیفیت توان، تلفات کمتر و همچنین، انتقال انرژی در شبکه هایی که دارای فرکانسهای متفاوت هستند، استفاده می شود. مزیتهای انتقال به روش DC (برق مستقیم) نسبت به AC (برق متناوب)، از جملهکنترل پذیری بهتر، باعث شده است تا در انتقال انرژی یا اتصال سیستم های قدرت ناهمگون از این روش انتقال استفاده شود. یکی از روش های انتقال انرژی با استفاده از جریان DC روش VSC-HVDC است. از این روش بیشتر برای اتصال دو شبکه که از نظر AC اتصال آنها ناممکن است، استفاده می شود. در این مقاله سیستم HVDC بر مبنای مبدل منبع ولتاژ (VSC-HVDC) که روشی نوین در انتقال توان در ولتاژ های زیاد است، مورد بررسی قرار گرفته است. همچنین، این سیستم با HVDC مرسوم یا سنتی و نیز سیستم انتقال AC مقایسه و روش های شبیه سازی و کنترل آن بیان شده است.
کلید واژگان: HVDC, پایداری, انتقال انرژی و مبدل منبع ولتاژHigh voltage direct current transmission systems (HVDC) have been applied for several advantages as link between asynchronous AC systems, economical power transmission over long distances, power accurate control, stability, power quality and low power dissipation. HVDC technology based on voltage source converter (VSC-HVDC) is a kind of newly developed HVDC transmission technology. It is attractive for connecting weak AC networks, islands networks and renewable sources to a main grid. This new HVDC system has been studied in this paper and compared with conventional HVDC and HVAC. Some control schemes have been introduced to control the VSC-HVDC system.Keywords: HVDC, power transmission, stability, voltage source converter -
در این مقاله مدل سازی ریاضی مناسبی از سیستم دو ترمیناله HVDC برای جایابی بهینه و پخش بار بهینه مانند مدل تزریق توان ارائه شده است. برای توسعه پخش بار بهینه (OPF) و جایابی بهینه مبتنی بر OPF از دو سیستم دو ترمیناله HVDC برای کاهش مجموع هزینه سوخت و تلفات اکتیو شبکه به عنوان توابع هدف استفاده شده است. چهارچوب بهینه سازی به وسیله برنامه ریزی غیر خطی (NLP) مدل گردیده است و با استفاده از محیط نرم افزاری Matlab و GAMS حل شده است. الگوریتم پیشنهادی بر روی سیستم های آزمایش 14 و 30 شینه IEEE پیاده سازی شده است. نتایج شبیه سازی قابلیت حضور دو سیستم دو ترمیناله HVDC را در بهبود عملکرد سیستم قدرت نشان می دهد. علاوه بر این، دو سیستم دو ترمیناله HVDC در عملکرد سیستم قدرت از نظر اقتصادی و فنی با ادوات FACTS: PST و OUPFC مقایسه شده است.
کلید واژگان: VSC, HVDC, پخش بار بهینه, جایابی بهینه مبتنی بر OPF, مدلسازی, برنامه ریزی غیر خطیIn this paper a suitable mathematical model of the two terminal HVDC system is provided for optimal power flow (OPF) and optimal location based on OPF such power injection model. The ability of voltage source converter (VSC) -based HVDC to independently control active and reactive power is well represented by the model. The model is used to develop an OPF-based optimal location algorithm of two systems two terminal HVDC to minimize the total fuel cost and active power losses as objective function. The optimization framework is modeled as non-linear programming (NLP) and solved by Matlab and GAMS softwares. The proposed algorithm is implemented on the IEEE 14- and 30-bus test systems. The simulation results show ability of two systems two terminal HVDC in improving the power system operation. Furthermore، two systems two terminal HVDC is compared by PST and OUPFC in the power system operation from economical and technical aspects.Keywords: VSC, HVDC, Optimal power flow, Optimal location, modeling, Non, Linear Programming -
Because of low losses and voltage drop, fast control of power, the limitless connection distance and isolation issues, using the High Voltage Direct Current (HVDC) transmission system based on Voltage Source Converters (VSC) is recommended to the power transfer in the electrical power networks included the offshore wind power plants (OWPP). The OWPPs are expected to meet the grid code necessities when requested to maintain stability. Utilization of the VSC HVDC along with the OWPP, can improve the control of power flow and the power system dynamic stability. In this paper, the impact of control of VSC HVDC based OWPP, on the dynamic stability of power systems is evaluated. In this way, the dynamic modeling of power system equipped by the VSC HVDC and OWPP are proposed. In the proposed model, using the concepts of controllability and observability of electromechanical modes of power systems, a new approach to the design a supplementary damping controller in VSC HVDC based OWPP is presented. The damping controller is designed based on the nonlinear adaptive neural networks concepts and trained by a proposed online method. The simulation results which are done in MATLAB, show the effectiveness of the proposed control strategy.Keywords: Offshore wind turbine, VSC HVDC systems, damping adaptive neural controller, control configuration analysis
-
The use of high voltage direct current (HVDC) transmission lines in power systems not only increase the capacity of electrical power transmission systems, but also strengthen the stability of the power network. In order to optimize the HVDC influences on voltage-frequency stability, it is necessary to design supplementary controllers in the most optimal path between input-output signals of the whole power system. The supplementary controllers are added to the local control loop of HVDC to improve active-reactive power flow. In this paper, an optimized method based on the controllability concept is proposed for the coupling of the input-output (IO) signals of the power system equipped with voltage source converter (VSC)-based HVDC. Then, the optimal path is used for supplementary damping controller design based on a novel adaptive recurrent neural network (ARNN). The ARNN is trained online Using a new training algorithm. The simulation results, which are carried on using MATLAB software, show the effectiveness of the control strategy to improve the voltage profile and dynamic stability of the power system.Keywords: Power system dynamic stability, Oscillation Modes Controllability, Supplementary Damping Controller, Recurrent neural network, VSC HVDC
-
Voltage Source Converter based High Voltage Direct Current (VSC-HVDC) has been an area of growing interest during the recent years. Indeed, VSC-HVDC has the capability of controlling the active power and the reactive power; rapidly, independently, and simultaneously. The main focus of this research is on VSC-HVDC system modeling; in which, two different controllers, such as the PI controller and the fuzzy logic controller, have been implanted in the system. Furthermore, these two controllers have been analyzed and compared to each other. Whereas, the main objective of the work presented in this paper is finding the more suitable controller which could allow improving the robustness of the whole control system and its impact on the dynamic performance of the VSC-HVDC during parameter uncertainties, such as load change, parametric variation, and faults occurrence. The obtained results have shown that using the fuzzy controller could lead to a better performance of the studied system, compared to the other controller.
Keywords: VSC-HVDC, PI Controller, Modeling, Fuzzy Logic Controller, Robustness, Faults -
Life Cycle Costing (LCC) is a methodology used first time by the Department of Defense of United State, its an economic calculation of all costs propagated during the life span of any technical system. For Renewable Energy (RE) systems, LCC is a good methodology, which shows the cost-effectiveness of using RE as an alternative source compared to conventional power generations. A LCC model was introduced for Wind generation system. Data collection was done through four different cost data sources. The results shows that the capital investment cost is $1.968/W. For a 20 years PV project life-time, the operation and maintenance cost forms 19% of the total LCC of the system.Keywords: Life Cycle Costing, Wind Farm, Data Acquisition, Maintenance Cost
-
Life cycle costing (LCC) is a methodology used first time by the Department of Defense of United State, its an economic calculation of all costs propagated during the life span of any technical system. For Renewable Energy (RE) systems, LCC is a good methodology, which shows the cost-effectiveness of using RE as an alternative source compared to conventional power generations. A LCC model was introduced for PV generation system. Data collection was done through four different cost data sources. The results shows that the average module price is $0.56/Wp and the capital investment cost is $1.184/Wp. For a 20 years PV project life-time, the operation and maintenance cost forms 27% of the total LCC of the system.Keywords: Life Cycle Costing, PV system, PV Module, Maintenance Cost
-
از آنجا که گزینه «جستجوی دقیق» غیرفعال است همه کلمات به تنهایی جستجو و سپس با الگوهای استاندارد، رتبهای بر حسب کلمات مورد نظر شما به هر نتیجه اختصاص داده شدهاست.
- نتایج بر اساس میزان ارتباط مرتب شدهاند و انتظار میرود نتایج اولیه به موضوع مورد نظر شما بیشتر نزدیک باشند. تغییر ترتیب نمایش به تاریخ در جستجوی چندکلمه چندان کاربردی نیست!
- جستجوی عادی ابزار سادهای است تا با درج هر کلمه یا عبارت، مرتبط ترین مطلب به شما نمایش دادهشود. اگر هر شرطی برای جستجوی خود در نظر دارید لازم است از جستجوی پیشرفته استفاده کنید. برای نمونه اگر به دنبال نوشتههای نویسنده خاصی هستید، یا میخواهید کلمات فقط در عنوان مطلب جستجو شود یا دوره زمانی خاصی مدنظر شماست حتما از جستجوی پیشرفته استفاده کنید تا نتایج مطلوب را ببینید.
* ممکن است برخی از فیلترهای زیر دربردارنده هیچ نتیجهای نباشند.
-
معتبرحذف فیلتر