فهرست مطالب

Cell Journal - Volume:21 Issue: 4, Winter 2020

Cell Journal (Yakhteh)
Volume:21 Issue: 4, Winter 2020

  • تاریخ انتشار: 1398/05/10
  • تعداد عناوین: 14
|
  • Fatima Ismail Hassan, Tina Didari, Fazlullah Khan, Kamal Niaz, Mojtaba Mojtahedzadeh, Mohammad Abdollahi Pages 363-370
    Despite advances in sepsis management, it remains a major intensive-care-unit (ICU) concern. From new prospective, positive effects of metformin, such as anti-oxidant and anti-inflammatory properties are considered potentially beneficial properties for management of septic patients. This article reviewed the potential ameliorative effects of metformin in sepsis-induced organ failure. Information were retrieved from PubMed, Scopus, Embase, and Google Scholar. Multi-organ damage, oxidative stress, inflammatory cytokine stimulation, and altered circulation are hallmarks of sepsis. Metformin exerts its effect via adenosine monophosphate-activated protein kinase (AMPK) activation. It improves sepsis-induced organ failure by inhibiting the production of reactive oxygen species (ROS) and pro-inflammatory cytokines, preventing the activation of transcription factors related to inflammation, decreasing neutrophil accumulation/infiltration, and also maintaining mitochondrial membrane potential. Studies reported the safety of metformin therapeutic doses, with no evidence of lactic acidosis, in septic patients.
    Keywords: Adenosine Monophosphate-Activated Protein Kinase, Metformin, Multi-Organ Failure, Oxidative Stress, Sepsis
  • Saeid Saghahazrati, Seyed Abdulmajid Ayatollahi, Farzad Kobarfard, Bagher Minaii Zang Pages 371-378
    Objective
    Glucagon-like peptide-1 (GLP-1) has attracted tremendous attention for treatment of diabetes. Likewise, it seems that active ingredients of chamomile oil might have anti-diabetic effects. This work was conducted to investigate the effects of the combination of GLP-1 and chamomile oil on differentiation of mesenchymal stem cells (MSCs) into functional insulin-producing cells (IPCs).
    Materials and Methods
    In this experimental study, adipose MSCs derived from the adult male New Zealand white rabbits were assigned into four groups: control (without any treatment); GLP-1 (in which cells were treated with 10 nM GLP-1 every other day for 5 days); chamomile oil (in which cells were treated with 100 ug/ml Matricaria chamomilla L. flower oil every other day for 5 days); and GLP-1+ chamomile oil (in which cells were treated with 10 nM GLP-1 and 100 µg/ml M. chamomilla flower oil every other day for 5 days). Characterization of isolated MSCs was performed using flow cytometry, Alizarin red S staining and Oil red O staining. The expressions of genes specific for IPCs were measured using reverse transcriptase-polymerase chain reaction (RT-PCR) assay. Measurement of insulin and the cleaved connecting peptide (C-peptide) in response to different concentrations of glucose, were performed using ELISA kits.
    Results
    Our results demonstrated that isolated cells highly expressed MSC markers and were able to differentiate into osteocytes and adipocytes. Additionally, using GLP-1 in combination with chamomile oil exhibited higher levels of IPCs gene markers including NK homeobox gene 2.2 (NKX-2.2), paired box gene 4 (PAX4), insulin (INS) and pancreatic duodenal homeobox-1 (PDX1) as well as insulin and C-peptide secretion in response to different glucose concentrations compared to GLP-1 or chamomile oil alone (P<0.05).
    Conclusion
    Collectively, these findings establish a substantial foundation for using peptides in combination with natural products to obtain higher efficiency in regenerative medicine and peptide therapy.

    Keywords: Chamomile Oil, Differentiation, Glucagon-Like Peptide-1, Insulin-Producing Cells, Mesenchymal Stem Cell
  • Fereshteh Nejaddehbashi, Mahmoud Hashemitabar, Vahid Bayati, Eskandar Moghimipour, Jabraeel Movaffagh, Mahmoud Orazizadeh, Mohammadreza Abbaspour Pages 379-390
    Objective
    Fabrication of an antibiotic-loaded scaffold with controlled release properties for wound dressing is one of tissue engineering challenges. The aim of this study was to evaluate the wound-healing effectiveness of 500-µm thick polycaprolactone (PCL) nanofibrous mat containing silver sulfadiazine (SSD) as an antibacterial agent.
    Materials and Methods
    In this experimental study, an electrospun membrane of PCL nanofibrous mat containing 0.3% weight SSD with 500 µm thickness, was prepared. Morphological and thermomechanical characteristics of nanofibers were evaluated. Drug content and drug release properties as well as the surface hydrophobicity of the nanofibrous membrane were determined. Antimicrobial properties and cellular viability of the scaffold were also examined. A full thickness wound of 400 mm2 was created in rats, to evaluate the wound-healing effects of PCL/SSD blend in comparison with PCL and vaseline gas used as the control group.
    Results
    SSD at a concentration of 0.3% improved physicochemical properties of PCL. This concentration of SSD did not inhibit the attachment of human dermal fibroblasts (HDFs) to nanofibers in vitro, but showed antibacterial activity against Gram-positive Staphylococcus aureus (ST) and Gram-negative Pseudomonas aeruginosa (PS). Overall, results showed that SSD improves characteristics of PCL nanofibrous film and improves wound-healing process in one-week earlier compared to control.
    Conclusion
    Cytotoxicity of SSD in fabricated nanofibrous mat is a critical challenge in designing an effective wound dressing that neutralizes cellular toxicity and improves antimicrobial activity. The PCL/SSD nanofibrous membrane with 500- µm thickness and 0.3% (w/v) SSD showed applicable characteristics as a wound dressing and it accelerated wound healing process in vivo.

    Keywords: Nanofibers, Polycaprolactone, Silver Sulfadiazine, Tissue Engineering, Wound Healing
  • Ali Karimi_Rasoul Shahrooz_Rahim Hobbenaghi_Rahim Mohammadi_Nowruz Delirezh_Saeede Amani_Johan Garssen_Esmaeil Mortaz_Ian M Adcock Pages 391-400
    Objective
    Peripheral arterial disease results from obstructed blood flow in arteries and increases the risk of amputation in acute cases. Therapeutic angiogenesis using bioengineered tissues composed of a chitosan scaffold that was enriched with mast cells (MCs) and/or platelet-rich plasma (PRP) was used to assess the formation of vascular networks and subsequently improved the functional recovery following hindlimb ischemia. This study aimed to find an optimal approach for restoring local vascularization.
    Materials and Methods
    In this experimental study, thirty rats were randomly divided into six experimental groups: a. Ischemic control group with right femoral artery transection, b. Ischemia with phosphate-buffered saline (PBS) control group, c. Ischemia with chitosan scaffold, d. Ischemia with chitosan and MCs, e. Ischemia with chitosan and PRP, and f. Ischemia with chitosan, PRP, and MCs. The left hind limbs served as non-ischemic controls. The analysis of capillary density, arterial diameter, histomorphometric analysis and immunohistochemistry at the transected locations and in gastrocnemius muscles was performed.
    Results
    The group treated with chitosan/MC significantly increased capillary density and the mean number of large blood vessels at the site of femoral artery transection compared with other experimental groups (P<0.05). The treatment with chitosan/MC also significantly increased the muscle fiber diameter and the capillary-to-muscle fiber ratio in gastrocnemius muscles compared with all other ischemic groups (P<0.05).
    Conclusion
    These findings suggested that chitosan and MCs together could offer a new approach for the therapeutic induction of angiogenesis in cases of peripheral arterial diseases.
    Keywords: Chitosan, Histology, Ischemia, Mast Cells, Platelet-Rich Plasma
  • Masoumeh Eliyasi Dashtaki, Masoud Hemadi, Ghasem Saki, Javad Mohammadiasl, Ali Khodadadi Pages 401-409
    Objective
    Approximately 1% of the male population suffers from obstructive or non-obstructive azoospermia. Previous in vitro studies have successfully differentiated mesenchymal stem cells (MSCs) into germ cells. Because of immune- modulating features, safety, and simple isolation, adipose tissue-derived MSCs (AT-MSCs) are good candidates for such studies. However, low availability is the main limitation in using these cells. Different growth factors have been investigated to overcome this issue. In the present study, we aimed to comparatively assess the performance of AT-MSCs cultured under the presence or absence of three different growth factors, epidermal growth factor (EGF), leukemia inhibitory factor (LIF) and glial cell line-derived neurotrophic factor (GDNF), following transplantation in testicular torsion-detorsion mice
    Materials and Methods
    This was an experimental study in which AT-MSCs were first isolated from male Naval Medical Research Institute (NMRI) mice. Then, the mice underwent testicular torsion-detorsion surgery and received bromodeoxyuridine (BrdU)-labeled AT-MSCs into the lumen of seminiferous tubules. The transplanted cells had been cultured in different conditioned media, containing the three growth factors and without them. The expression of germ cell-specific markers was evaluated with real-time polymerase chain reaction (PCR) and western-blot. Moreover, immunohistochemical staining was used to trace the labeled cells.
    Results
    The number of transplanted AT-MSCs resided in the basement membrane of seminiferous tubules significantly increased after 8 weeks. The expression levels of Gcnf and Mvh genes in the transplanted testicles by AT-MSCs cultured in the growth factors-supplemented medium was greater than those in the control group (P<0.001 and P<0.05, respectively). The expression levels of the c-Kit and Scp3 genes did not significantly differ from the control group.
    Conclusion
    Our findings showed that the use of EGF, LIF and GDNF to culture AT-MSCs can be very helpful in terms of MSC survival and localization.

    Keywords: Azoospermia, Epidermal Growth Factor, Glial Cell Line-Derived Neurotrophic Factor, Leukemia Inhibitory Factor, Mesenchymal Stem Cells
  • Nasrin Majidi Gharenaz, Mansoure Movahedin, Zohreh Mazaheri Pages 410-418
    Objective
    Applications of biological scaffolds for regenerative medicine are increasing. Such scaffolds improve cell attachment, migration, proliferation and differentiation. In the current study decellularised mouse whole testis was used as a natural 3 dimensional (3D) scaffold for culturing spermatogonial stem cells.
    Materials and Methods
    In this experimental study, adult mouse whole testes were decellularised using sodium dodecyl sulfate (SDS) and Triton X-100. The efficiency of decellularisation was determined by histology and DNA quantification. Masson’s trichrome staining, alcian blue staining, and immunohistochemistry (IHC) were done for validation of extracellular matrix (ECM) proteins. These scaffolds were recellularised through injection of mouse spermatogonial stem cells in to rete testis. Then, they were cultured for eight weeks. Recellularised scaffolds were assessed by histology, real-time polymerase chain reaction (PCR) and IHC.
    Results
    Haematoxylin-eosin (H&E) staining showed that the cells were successfully removed by SDS and Triton X-100. DNA content analysis indicated that 98% of the DNA was removed from the testis. This confirmed that our decellularisation protocol was efficient. Masson’s trichrome and alcian blue staining respectively showed that glycosaminoglycans (GAGs) and collagen are preserved in the scaffolds. IHC analysis confirmed the preservation of fibronectin, collagen IV, and laminin. MTT assay indicated that the scaffolds were cell-compatible. Histological evaluation of recellularised scaffolds showed that injected cells were settled on the basement membrane of the seminiferous tubule. Analyses of gene expression using real-time PCR indicated that expression of the Plzf gene was unchanged over the time while expression of Sycp3 gene was increased significantly (P=0.003) after eight weeks in culture, suggesting that the spermatogonial stem cells started meiosis. IHC confirmed that PLZF-positive cells (spermatogonial stem cells) and SYCP3-positive cells (spermatocytes) were present in seminiferous tubules.
    Conclusion
    Spermatogonial stem cells could proliferate and differentiated in to spermatocytes after being injected in the decellularised testicular scaffolds.

    Keywords: Extracellular Matrix, Scaffold, Spermatogonial Cells, Testis
  • Zahra Balavandi, Ali Neshasteh, Riz, Fereshteh Koosha, Samira Eynali, Mahmood Hoormand, Minoo Shahidi Pages 419-425
    Objective
    Melanoma is the most malignant and severe type of skin cancer. It is a tumor with a high risk of metastasis and resistant to conventional treatment methods (surgery, radiotherapy, and chemotherapy). β-elemene is the most active constituent of Curcuma wenyujin which is a non-cytotoxic antitumor drug, proved to be effective in different types of cancers. The study aimed to investigate the therapeutic effects of β-elemene in combination with radiotherapy on A375 human melanoma.
    Materials and Methods
    In this experimental study, human melanoma cells were grown in the monolayer culture model. The procedure of the treatment was performed by the addition of different concentrations of β-elemene to the cells. Then, the cells were exposed to 2 and 4 Gy X-ray in different incubation times (24, 48, and 72 hours). The MTT assay was used for the determination of the cell viability. To study the rate of apoptosis response to treatments, the Annexin V/PI assay was carried out.
    Results
    The results of the MTT assay showed β-elemene reduced the cell proliferation in dose- and time-dependent manners in cells exposed to radiation. Flow cytometry analysis indicated that β-elemene was effective in the induction of apoptosis. Furthermore, the combination treatment with radiation remarkably decreased the cells proliferation ability and also enhanced apoptosis. For example, cell viability in a group exposed to 40 µg/ml of β-elemene was 80%, but combination treatment with 6 MV X beam at a dose of 2 Gy reduced the viability to 61%.
    Conclusion
    Our results showed that β-elemene reduced the proliferation of human melanoma cancer cell through apoptosis. Also, the results demonstrated that the radio sensitivity of A375 cell line was significantly enhanced by β-elemene. The findings of this study indicated the efficiency of β-elemene in treating melanoma cells and the necessity for further research in this field.

    Keywords: Apoptosis, Beta-Elemene, Melanoma, X-ray
  • Sharareh Peymanfar, Rasoul Roghanian, Kamran Ghaedi, Sayed, Hamid Zarkesh, Esfahani, Reza Yari Pages 426-432
    Objective
    Granulocyte colony-stimulating factor (G-CSF) has a wide variety of functions including stimulation of hematopoiesis and proliferation of granulocyte progenitor cells. Recombinant human G-CSF (rh-G-CSF) is used for treatment of neutropenia in patients receiving chemotherapy. The mature bloodstream neutrophils express G-CSF receptor (G-CSFR), presenting a significant and specific mechanism for circulating G-CSF clearance. Computational studies are essential bioinformatics methods used for characterization of proteins with regard to their physicochemical properties and 3D configuration, as well as protein–ligand interactions for recombinant drugs. We formerly produced rh-G-CSF in E. coli and showed that the isolated protein had unacceptable biological activity in mice. In the present paper, we aimed to characterize the purified rh-G-CSF by analytical tests and developed an in vivo model by computational modelling of G-CSF.
    Materials and Methods
    In this experimental study, we analyzed the purified G-CSF using the analytical experiments. Then, the crystalline structure was extracted from Protein Data Bank (PDB) and molecular dynamics (MD) simulation was performed using Gromacs 5.1 package under an Amber force field. The importance of amino acid contents of G-CSF, to bind the respective receptor was also detected; moreover, the effect of dithiothreitol (DTT) used in G-CSF purification was studied.
    Results
    The results revealed that characteristics of the produced recombinant G-CSF were comparable with those of the standard G-CSF and the recombinant G-CSF with the residual amino acid was stable. Also, purification conditions (DTT and existence of extra cysteine) had a significant effect on the stability and functionality of the produced G-CSF.
    Conclusion
    Experimental and in silico analyses provided good information regarding the function and characteristics of our recombinant G-CSF which could be useful for industrial researches.

    Keywords: Characterization, E. coli, Granulocyte Colony-Stimulating Factor
  • Ali Fallah, Hajar Estiri, Elizabeth Parrish, Mansoureh Soleimani, Sirous Zeinali, Azita Zadeh, Vakili Pages 433-443
    Objective
    Tumor necrosis factor-alpha (TNF-α), checkpoint inhibitors, and interleukin-17 (IL-17) are critical targets in inflammation and autoimmune diseases. Monoclonal antibodies (mAbs) have a successful portfolio in the treatment of chronic diseases. With the current progress in stem cells and gene therapy technologies, there is the promise of replacing costly mAbs production in bioreactors with a more direct and cost-effective production method inside the patient’s cells. In this paper we examine the results of an investigational assessment of secukinumab gene therapy.
    Materials and Methods
    In this experimental study, the DNA sequence of the heavy and light chains of secukinumab antibodies were cloned in a lentiviral vector. Human chorionic villous mesenchymal stem cells (CMSCs) were isolated and characterized. After lentiviral packaging and titration, part of the recombinant viruses was used for transduction of the CMSCs and the other part were applied for systemic gene therapy. The engineered stem cells and recombinant viruses were applied for ex vivo and in vivo gene therapy, respectively, in different groups of rat models. In vitro and in vivo secukinumab expression was confirmed with quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and ELISA by considering the approved secukinumab as the standard reference.
    Results
    Cell differentiation assays and flow cytometry of standard biomarkers confirmed the multipotency of the CMSCs. Western blot and qRT-PCR confirmed in vitro gene expression of secukinumab at both the mRNA and protein level. ELISA testing of serum from treated rat models confirmed mAb overexpression for both in vivo and ex vivo gene therapies.
    Conclusion
    In this study, a lentiviral-mediated ex vivo and in vivo gene therapy was developed to provide a moderate dose of secukinumab in rat models. Biosimilar gene therapy is an attractive approach for the treatment of autoimmune disorders, cancers and other chronic diseases.

    Keywords: Gene Therapy, Genetic Vectors, Monoclonal Antibody, Secukinumab, Stem Cells
  • Mona Ahmadalizadeh Khanehsar, Moslem Hoseinbeyki, Masoumeh Taha, Arash Javeri Pages 444-450
    Objective
    Epigenetic alterations of the malignantly transformed cells have increasingly been regarded as an important event in the carcinogenic development. Induction of some miRNAs such as miR-302/367 cluster has been shown to induce reprogramming of breast cancer cells and exert a tumor suppressive role by induction of mesenchymal to epithelial transition, apoptosis and a lower proliferation rate. Here, we aimed to investigate the impact of miR-302/367 overexpression on transforming growth factor-beta (TGF-β) signaling and how this may contribute to tumor suppressive effects of miR-302/367 cluster.
    Materials and Methods
    In this experimental study, MDA-MB-231 and SK-BR-3 breast cancer cells were cultured and transfected with miR-302/367 expressing lentivector. The impact of miR-302/367 overexpression on several mediators of TGF-β signaling and cell cycle was assessed by quantitative real-time polymerase chain reaction (qPCR) and flow cytometry.
    Results
    Ectopic expression of miR-302/367 cluster downregulated expression of some downstream elements of TGF-β pathway in MDA-MB-231 and SK-BR-3 breast cancer cell lines. Overexpression of miR-302/367 cluster inhibited proliferation of the breast cancer cells by suppressing the S-phase of cell cycle which was in accordance with inhibition of TGF-β pathway.
    Conclusion
    TGF-β signaling is one of the key pathways in tumor progression and a general suppression of TGF-β mediators by the pleiotropically acting miR-302/367 cluster may be one of the important reasons for its anti-tumor effects in breast cancer cells.
    Keywords: Breast Cancer, miR-302, 367, Reprogramming, Transforming Growth Factor-Beta
  • Roya Mokhtarian, Hossein Tabatabaeian, Pardis Saadatmand, Mansoureh Azadeh, Negar Balmeh, Bagher Yakhchali, Kamran Ghaedi Pages 451-458
    Objective
    Gastric cancer is a multifactorial disease. In addition to environmental factors, many genes are involved in this malignancy. One of the genes associated with gastric cancer is CD44 gene and its polymorphisms. CD44 gene plays role in regulating cell survival, growth and mobility. The single nucleotide polymorphism (SNP) rs8193, located in the CD44 gene, has not been studied in gastric cancer patients of the Iranian population. The present study aims to study this polymorphism in 86 gastric cancer patients and 96 healthy individuals.
    Materials and Methods
    In this cross-sectional case-control study, rs8193 polymorphism was genotyped by allele specific primer polymerase chain reaction (ASP-PCR) technique. The obtained data were statistically analyzed. To find the potential mechanism of action, rs8193 was bioinformatically investigated.
    Results
    rs8193 C allele played a risk factor role for gastric cancer. Patients carrying this allele were more susceptible to have gastric cancer, with lymph node spread. On the other hand, rs8193 T allele, a protective factor, was associated with a higher chance of accumulation in the lower stages of cancer. C allele might impose its effect via destabilizing CD44 and miR-570 interaction.
    Conclusion
    rs8193 is statistically associated with the risk of malignancy, lymph node spread and stage of gastric cancer in Iranian population.

    Keywords: CD44, Gastric Cancer, miR-570
  • Xingni Zhou, Zhenghua Zhang, Xiaohua Liang Pages 459-466
    Objective
    Lung cancer has high incidence and mortality rate, and non-small cell lung cancer (NSCLC) takes up approximately 85% of lung cancer cases. This study is aimed to reveal miRNAs and genes involved in the mechanisms of NSCLC.
    Materials and Methods
    In this retrospective study, GSE21933 (21 NSCLC samples and 21 normal samples), GSE27262 (25 NSCLC samples and 25 normal samples), GSE43458 (40 NSCLC samples and 30 normal samples) and GSE74706 (18 NSCLC samples and 18 normal samples) were searched from gene expression omnibus (GEO) database. The differentially expressed genes (DEGs) were screened from the four microarray datasets using MetaDE package, and then conducted with functional annotation using DAVID tool. Afterwards, protein-protein interaction (PPI) network and module analyses were carried out using Cytoscape software. Based on miR2Disease and Mirwalk2 databases, microRNAs (miRNAs)-DEG pairs were selected. Finally, Cytoscape software was applied to construct miRNA-DEG regulatory network.
    Results
    Totally, 727 DEGs (382 up-regulated and 345 down-regulated) had the same expression trends in all of the four microarray datasets. In the PPI network, TP53 and FOS could interact with each other and they were among the top 10 nodes. Besides, five network modules were found. After construction of the miRNA-gene network, top 10 miRNAs (such as hsa-miR-16-5p, hsa-let-7b-5p, hsa-miR-15a-5p, hsa-miR-15b-5p, hsa-let-7a-5p and hsa-miR-34a- 5p) and genes (such as HMGA1, BTG2, SOD2 and TP53) were selected.
    Conclusion
    These miRNAs and genes might contribute to the pathogenesis of NSCLC.

    Keywords: Meta-Analysis, microRNA, Non-Small Cell Lung Cancer, Protein Interaction, Regulatory Network
  • Mahsa Rahimi, Ali Sharifi, Zarchi, Nosratollah Zarghami, Lobat Geranpayeh, Marzieh Ebrahimi, Effat Alizadeh Pages 467-478
    Objective
    microRNAs (miRNAs) play important role in progression of tumorigenesis. They can target self-renewal and epithelial-mesenchymal transition (EMT) abilities in tumor cells, especially in cancer stem cells (CSCs). The objective of this study was to implement data mining to identify important miRNAs for targeting both self-renewal and EMT. We also aimed to evaluate these factors in mammospheres as model of breast cancer stem cells (BCSCs) and metastatic tumor tissues.
    Materials and Methods
    In this experimental study, mammospheres were derived from MCF-7 cells and characterized for the CSCs properties. Then expression pattern of the selected miRNAs in spheroids were evaluated, using the breast tumor cells obtained from seven patients. Correlation of miRNAs with self-renewal and EMT candidate genes were assessed in mammospheres and metastatic tumors.
    Results
    The results showed that mammospheres represented more colonogenic and spheroid formation potential than MCF-7 cells (P<0.05). Additionally, they had enhanced migration and invasive capabilities. Our computational analyses determined that miR-200c and miR-30c could be candidates for targeting both stemness and EMT pathways. Expression level of miR-200c was reduced, while miR-30c expression level was enhanced in mammospheres, similar to the breast tumor tissues isolated from three patients with grade II/III who received neo-adjuvant treatment. Expression level of putative stem cell markers (OCT4, SOX2, c-MYC) and EMT-related genes (SNAIL1, CDH2, TWIST1/2) were also significantly increased in mammospheres and three indicated patients (P<0.05).
    Conclusion
    Simultaneous down-regulation and up-regulation of respectively miR-200c and miR-30c might be signature of BCSC enrichment in patients post neo-adjuvant therapy. Therefore, targeting both miR-200c and miR-30c could be useful for developing new therapeutic approaches, against BCSCs.
    Keywords: Metastasis, miR-200c, miR-30c, Self-Renewal, Spheroid
  • Fatemeh Hassani, Bita Ebrahimi, Ashraf Moini, Ali Ghiaseddin, Mahshid Bazrafkan, Gholamreza Hassanzadeh, Mojtaba Rezazadeh Valojerdi Pages 479-493
    Objective
    Testing novel biomaterials for the three dimensional (3D) culture of ovarian follicles may ultimately lead to a culture model which can support the integrity of follicles during in vitro culture (IVC). The present study reports the first application of a chitosan (CS) hydrogel in culturing mouse preantral follicles.
    Materials and Methods
    In this interventional experiment study, CS hydrogels with the concentrations of 0.5, 1, and 1.5% were first tested for fourier transform infrared spectroscopy (FT-IR), Compressive Strength, viscosity, degradation, swelling ratio, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity and live/dead assay. Thereafter, mouse ovarian follicles were encapsulated in optimum concentration of CS (1%) and compared with those in alginate hydrogel. The follicular morphology, quality of matured oocyte and steroid secretion in both CS and alginate were assessed by enzyme-linked immunosorbent assay (ELISA). The expression of folliculogenesis, endocrine, and apoptotic related genes was also evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) and compared with day that in 0.
    Results
    The rates of survival, and diameter of the follicles, secretion of estradiol, normal appearance of meiotic spindle and chromosome alignment were all higher in CS group compared with those in alginate group (P≤0.05). The expression of Cyp19a1 and Lhcgr in CS group was significantly higher than that of the alginate group (P≤0.05).
    Conclusion
    The results showed that CS is a permissive hydrogel and has a beneficial effect on encapsulation of ovarian follicle and its further development during 3D culture.

    Keywords: Alginate, Chitosan, Hydrogel, Ovarian Follicle