فهرست مطالب

علوم و مهندسی زلزله - سال ششم شماره 1 (پیاپی 18، بهار 1398)

مجله علوم و مهندسی زلزله
سال ششم شماره 1 (پیاپی 18، بهار 1398)

  • تاریخ انتشار: 1398/03/30
  • تعداد عناوین: 10
|
  • سمانه کاظمی، حمید زعفرانی * صفحات 1-11

    به دلیل برهم کنش چشمه های لرزه زا، وقوع یک زلزله احتمال وقوع زلزله های آینده را در منطقه تحت تاثیر قرار می دهد. در این مطالعه احتمال وقوع زلزله های با بزرگای Mw≥5.8 بر اساس مدل های وابسته به زمان بی پی تی و ویبل برای دوره 10، 30 و 50 ساله در بخشی از منطقه زاگرس ارزیابی شده است. ابتدا تغییرات تنش کولمب ناشی از برهم-کنش زمین لرزه ها در هر گسل محاسبه شده است. سپس اثر این تغییر تنش در احتمال وقوع زلزله های مشخصه5 برحسب هر دو اثر دائمی (تغییر زمان) و گذرا (نرخ- حالت) تغییرات تنش کولمب ارزیابی شده است. نتایج نشان می دهد که مدل ویبل احتمال بالایی از وقوع زلزله را نسبت به مدل بی پی تی در منطقه تخمین زده است. در نظر گرفتن اثرات تغییر تنش زلزله ها، موجب تغییر در نتایج احتمالات شرطی به دست آمده از هر دو مدل بی پی تی و ویبل شد، به طوری که در برخی چشمه های لرزه زا موجب افزایش و در برخی دیگر موجب کاهش نتایج احتمال شد. بیشترین احتمال به دست آمده مربوط به گسل کازرون است که این امر نشان دهنده ی فعالیت لرزه ای بالای این گسل است.

    کلیدواژگان: احتمال، تنش کولمب، مدل وابسته به زمان، بی پی تی، ویبل
  • ابراهیم ترکان لو، ناصر خاجی* صفحات 13-22

    برخلاف روش های محاسباتی نرم که نتایجی تقریبی از یک مسئله معکوس ارائه می دهند، روش های محاسباتی سخت به دلیل یافتن نتایج نسبتا دقیق تر، در مسائل معکوس مهندسی به وفور استفاده می شوند. روش های منظم سازی یکی از ابزارهای رایج در رفع بدخیمی موجود در این گونه مسائل هستند. استفاده از این روش ها به سبب عدم نیاز به اطلاعات اولیه، در مسائل معکوس بسیار مورد توجه هستند. در این مقاله، روش مرسوم جهت برش زدن تعداد مدهای درگیر در پاسخ نهایی مسئله بررسی شده و یک روش جدید برای برش زدن مناسب تر این پارامتر در روش تفکیک طیفی ارائه شده است. استفاده از روش تفکیک طیفی نتایج قابل قبولی، به ویژه در مناطقی که تراکم و دقت داده کم باشد، ارائه می کند. در این مقاله، با استفاده از روش پیشنهادی، پاسخ ها در دو حالت داده دقیق و داده دارای خطا برای روش تفکیک طیفی محاسبه شده اند. روش تفکیک طیفی شبیه به روش تجزیه مقادیر تکین بوده که در حل مسائل مهندسی بسیار استفاده می شود. برای بررسی کارایی روش پیشنهادی، نتایج آن برای دو گسل مفروض در حالات دو بعدی و سه بعدی ارائه شده است. پاسخ های به دست آمده نمایانگر دقت مناسب روش در برش زدن پارامتر مربوطه حین انجام تحلیل معکوس است؛ بنابراین نگارندگان استفاده از این روش را در حل مسائل معکوس مربوط به گسلش پیشنهاد می کنند.

    کلیدواژگان: حل معکوس، منظم سازی، تفکیک طیفی، تجزیه مقادیر تکین، پارامتر برش
  • عبدالله سهرابی *، محسن ایثاری، رضا تاری نژاد، شهرام مقامی صفحات 23-34

    توپوگرافی ناهموار یکی از عوامل ایجاد تفاوت جنبش در نقاط تکیه گاهی سازه های بزرگ نظیر سدها می باشد. در این مقاله از روش عددی اجزای مرزی سه بعدی جهت حل پاسخ لرزه ای دره محل سد پاکویما استفاده شده و نتایج حاصله در کنار تحلیل های ارائه شده، با مقادیر ثبت شده طی زمین لرزه سال 2001 سد پاکویما مقایسه شده است. از مولفه های افقی زمین لرزه واقعی ثبت شده در کف دره پس از پردازش های لازم، به عنوان موج ورودی جهت تحلیل استفاده گردیده و تاریخچه تغییر مکان و بزرگنمایی نقاط مختلف دره محل سد ارائه و بررسی شده است. نتایج نشانگر آن است که دامنه بیشینه تغییر مکان با افزایش ارتفاع نقاط در دو سوی دره کاهش می یابد؛ با این حال در حوزه فرکانس، بزرگنمایی در فرکانس های بالا با افزایش ارتفاع نقاط دره افزایش می یابد. نسبت دامنه تغییر مکان ها در طول دره محل سد تا حدود 3 نیز می رسد که این مسئله لزوم توجه به جنبش های غیریکنواخت در سازه های بزرگ را نشان می دهد.

    کلیدواژگان: اثرات توپوگرافی، اجزای مرزی، حوزه زمان، مدل سازی عددی، سد پاکویما
  • ابوالحسن شریفی، محمد شریفی پور* صفحات 35-51

    در محدوده کرنش های کوچک (ε≤〖10〗^(-3)%)، سرعت موج برشی (Vs) و متعاقب آن مدول برشی حداکثر (Gmax) یکی از مولفه های اساسی برای انجام محاسبات ژئوتکنیکی و تحلیل دینامیکی خاک ها می باشد. تاثیر اندازه دانه ها در هنگام انتشار امواج بر رفتار دینامیکی خاک، یکی از مسائل مهم و مورد بحث محققین است. در گذشته تاثیر اندازه دانه های خاک بر سرعت موج برشی، معمولا در دامنه محدودی از اندازه دانه های خاک مورد برسی قرارگرفته است. اگرچه نتایج این تحقیقات، تاثیرهای متفاوت اندازه دانه های خاک بر سرعت موج برشی را نشان می دهد، اما نتیجه ای قطعی از تاثیر اندازه دانه های خاک بر سرعت موج برشی ارائه نگردیده است. در این تحقیق به روش آزمایشگاهی و با استفاده از دستگاه المان خمشی، تاثیر اندازه دانه های خاک بر سرعت موج برشی در دامنه وسیعی از اندازه دانه های خاک ماسه ای خشک، تحت فشارهای همه جانبه از 50 تا 500 کیلو پاسکال در دستگاه سه محوری بررسی شد. به کمک الک های استاندارد ASTM خاک ماسه ای در 10 گروه تفکیک شد. از هر گروه، نمونه های سه محوری به روش تراکم کاهش یافته و با رعایت نسبت تخلخل یکسان تهیه و مورد آزمایش قرار گرفت. نتایج بررسی ها نشان می-دهد که سرعت موج برشی به اندازه ی دانه ها وابسته است، به طوری که در قطر متوسط دانه ها از 225/0 تا 29/1 میلی متر با افزایش قطر، سرعت موج برشی افزایش و برای قطر متوسط دانه ها از 29/1 تا 14/7 میلی متر با افزایش قطر سرعت موج برشی کاهش می یابد.

    کلیدواژگان: سرعت موج برشی، خاک دانه ای، آزمون المان خمشی، مدول برشی، رفتار کرنش کوچک
  • ایمان گل پذیر، عباس قلندرزاده*، محمدکاظم جعفری صفحات 53-67

    در این مقاله عملکرد لایه های کاهنده فشار پلیمری در بهبود پاسخ دینامیکی دیوارهای حائل بررسی گردیده است. برای این منظور با انجام یک سری آزمایش میز لرزه g1، رفتار دیوار حائل تسلیم نشده در دو حالت با و بدون لایه کاهنده فشار مدل سازی شده است. جهت ساخت لایه کاهنده فشار از فوم پلی یورتان (PU) استفاده شده که ضمن دارا بودن خصوصیات مکانیکی مناسب، برخی از محدودیت های مصالحی که در تحقیقات گذشته به کار برده شده را مرتفع می سازد. نتایج نشان می دهد که اجرای لایه کاهنده فشار از جنس فوم PU، نیروی افقی کل و دینامیکی وارد بر دیوار را به ترتیب به طور متوسط 30 و 45 درصد کاهش داده است. به ازای سختی بی بعد یکسان، این نوع فوم در مقایسه با مصالح مشابه نظیر فوم پلی استایرن انبساطی (EPS) عملکرد بهتری را حاصل نموده است. همچنین ملاحظه گردیده که این روش در تحریک های متوسط و شدید (دامنه شتاب ورودی بزرگ تر از g24/0) بازدهی بیشتری دارد.

    کلیدواژگان: آزمایش میز لرزه g1، دیوار حائل، فشار خاک، لایه کاهنده فشار لرزه ای، فوم پلی یورتان
  • مجید فرین، مسعود حاجی علیلوی * صفحات 69-85

    یک سری آزمایش های میز لرزه g1 برای بررسی پاسخ مدل تونل متروی تبریز که یک تونل دایروی مدفون در ماسه خشک می باشد، تحت بارگذاری نامنظم با دامنه کم و امواج هارمونیک با دامنه بالا انجام شد. اثرات پارامترهای مختلف شامل شتاب ماکزیمم زمین و محتوای فرکانسی حرکات ورودی روی رفتار تونل بررسی شد. آزمایش ها در دو شتاب ماکزیمم زلزله g0.35 و g0.50 و فرکانس های 1، 3، 5 و 8 هرتز انجام شدند. نتایج آزمایش ها برحسب نیروهای دینامیکی پوشش تونل و شتاب نقاط مختلف مدل ارائه شده است. نتایج نشان می دهد رفتار دینامیکی تونل های دایروی می تواند به دو مرحله تقسیم بندی شود: مرحله ناپایدار در طی چندین سیکل اول و مرحله سیکل های پایدار که در طی آن نیروها در پوشش تونل حول مقدار میانگین نوسان می کند. به علاوه، اندازه گیری های آزمایش های میز لرزه نشان می دهد با افزایش فرکانس بارگذاری برای شتاب A=0.35g، لنگر ماکزیمم ایجاد شده در پوشش تونل ثابت مانده یا اندکی کاهش می یابد اما برای A=0.50g، لنگر ماکزیمم به شدت کاهش می یابد. شتاب افقی ثبت شده در چندین تراز نشان می دهد که تقویت سطحی به وسیله حفره تونل انجام می گیرد که به عنوان مانع در جهت گسترش امواج برشی به سمت بالا عمل می کند.

    کلیدواژگان: تونل مترو، شهر تبریز، مدل سازی فیزیکی، میز لرزه، رفتار لرزه ای
  • غلامرضا لگزیان، بهرخ حسینی *، محمود حسینی صفحات 87-102

    در روش های طراحی متعارف، ساختمان طوری طراحی می گردد که در هنگام وقوع زلزله این امکان وجود داشته باشد که در تمام طبقات ساختمان، مصالح سازه بتوانند وارد محدوده غیر ارتجاعی شوند. مشکل این روش آن است که یک ساختمان n طبقه منظم، در هر جهت اصلی دارای n درجه آزادی انتقالی می باشد؛ لذا برآورد رفتار غیر ارتجاعی ساختمان تحت اثر زلزله های نامتعین در آینده به سادگی قابل بررسی نخواهد بود و علیرغم طراحی دقیق، این احتمال وجود دارد که تحت یک زلزله خاص، تغییر مکان های طبقات دارای توزیعی نامناسب بوده و این تغییر مکان های غیر ارتجاعی در طبقاتی خاص متمرکز گردیده و باعث گسیختگی آن طبقات و در نهایت گسیختگی کل سازه شوند. در صورت استفاده از یک هسته صلب با اتصال مفصل به پی، یک سازه n طبقه، در هر راستا تقریبا دارای رفتاری یک درجه آزادی بوده و در نتیجه برآورد رفتار سازه تحت اثر زلزله های محتمل، ساده تر و دقیق تر خواهد بود و همچنین در این سیستم، امکان تمرکز تغییر مکان در برخی از طبقات ساختمان (طبقه نرم) به هیچ وجه وجود نخواهد داشت. نظر به آنکه رفتار چنین سازه ای عمدتا در مود اول ارتعاشی می باشد، لذا در این مقاله یک روش ساده شده برای تحلیل این نوع سازه ارائه شده است و رفتار تاریخچه زمانی ارتجاعی و غیر ارتجاعی سازه ی معادل با سازه اصلی، مقایسه گردیده و نتایج به دست آمده حاکی از دقت بسیار بالای سازه ی معادل در تحلیل ارتجاعی و دقت نسبتا خوب در تحلیل های غیر ارتجاعی می باشد.

    کلیدواژگان: درجات آزادی، حرکت گهواره ای، هسته صلب، سازه ی معادل، تحلیل ارتجاعی تاریخچه زمانی، تحلیل غیر ارتجاعی تاریخچه زمانی
  • الهه سادات هاشمی*، عبدالرضا سروقدمقدم، نادر خواجه احمدعطاری، سید امیرحسین هاشمی صفحات 103-118

    با توجه به اینکه در ساختمان های بنایی، اعضای سازه ای اصلی که با نیروهای جانبی مقابله می کنند، دیوارها هستند، به منظور ارزیابی لرزه ای و همچنین تقویت این دیوار ها الگوریتم مناسبی برای مدل سازی این دیوارهای غیرمسلح و همچنین دیوار های تقویت شده با بتن پاشی یک طرفه و دوطرفه در نرم افزارهای متداول طراحی وجود ندارد.
    نیاز به نرم افزارهای ویژه و بسیار تخصصی باعث شده است تحلیل رفتار، طراحی یا بهسازی لرزه ای ساختمان دارای دیوار مصالح بنایی غیر مسلح یا تقویت شده، برای اکثر مهندسین کاربردی نباشد. تدوین رویه ای برای استفاده از نرم افزارهای متداول علاوه بر حل مشکل فوق، امکان مدل سازی دیوارهای مصالح بنایی غیرمسلح یا تقویت شده در ساختمان-های نیمه اسکلت و یا مهندسی را فراهم می کند. در این مطالعه با مبنا قرار دادن نتایج آزمایشگاهی 12 نمونه دیوار غیر مسلح و تقویت شده تحت بار چرخه ای، مقادیر بهینه پارامترها برای بهترین کالیبراسیون نتایج مدل سازی با نتایج آزمایشگاهی موجود استخراج شده است. قابلیت مدل سازی دیوارهای مصالح بنایی غیرمسلح و مسلح شده در نرم افزارهای متداول تحلیل و طراحی ارزیابی شده است. همچنین کارایی روش های بهسازی دیوار های مصالح بنایی و قابلیت نرم افزار در برآورد آنها نیز بررسی شده است.

    کلیدواژگان: دیوار مصالح بنایی، ارزیابی لرزه ای، دیوار مسلح شده با بتن پاشی، روال مدل سازی، المان لایه ای
  • محبوبه ابوطالبی، جعفر کیوانی، افشین مشکوه ا لدینی* صفحات 119-137

    این پژوهش به بررسی روند تغییرات پاسخ لرزه ای اسکلت های ترکیبی قاب خمشی محیطی و مقایسه آن با سیستم پایه، بر اساس نتایج تحلیل های غیرخطی تحت مجموعه ای از رکوردهای نیرومند سه مولفه ای حوزه نزدیک می پردازد. ساختارهای ترکیبی با تعبیه پیکربندی های چند طبقه ای المان های زیپر بزرگ مقیاس در اسکلت قاب محیطی خمشی حاصل می گردند. المان های زیپر بزرگ مقیاس، تنها در پانل های صلب سازه قاب محیطی تعبیه شده و دارای اتصال پیوسته با پانل زون های اسکلت مقاوم می باشند. پروسه مطالعاتی حاضر شامل بررسی چگونگی تغییرات پارامترهای پاسخ سه اسکلت مقاوم 30 طبقه با و بدون پیکربندی المان های زیپر بزرگ مقیاس است. طراحی سازه های مطالعاتی بر اساس ضوابط مقررات ملی ساختمان و همچنین ویرایش چهارم آیین نامه طراحی ساختمان ها در برابر زلزله (استاندارد 2800) انجام شده است. مدل سازی رفتار غیرخطی اعضا و تعریف مفاصل پلاستیک بر اساس ضوابط FEMA356 بوده و مجموعه تحلیل های غیرخطی تاریخچه زمانی با استفاده از نرم افزار SAP 2000 صورت گرفته است. کاربرد المان های زیپر بزرگ مقیاس در سیستم قاب محیطی خمشی، سبب پخش به نسبت یکنواخت تر نیروی محوری، برش، لنگر خمشی و پیچشی دینامیکی در ستون های محیطی پلان و کاهش دامنه دوران غیرخطی اتصالات می شود. همچنین، ارزیابی پارامترهای پاسخ دینامیکی این سازه ها نشان-دهنده ی بهره وری بالاتر سیستم سازه ترکیبی فوق بوده و کاهش نسبی پارامترهای پاسخ لرزه ای را در پی دارد.

    کلیدواژگان: ساختمان بلند، قاب محیطی خمشی، المان زیپر بزرگ مقیاس، حوزه نزدیک گسل، پانل زون
  • علی کارگران، علی خیرالدین* صفحات 139-150

    امروزه وجود ستون های کوتاه در ساختمان ها و پل ها به عنوان یک چالش جدی در زلزله مطرح می شود. این پدیده مخرب به دلیل اختلاف طول ستون در یک تراز مشخص رخ می دهد که عمدتا به دلیل ملاحظات معماری از قبیل قرارگرفتن ساختمان روی سطح شیب دار یا محدود شدن ستون و دیوار با عناصر غیر سازه ای نظیر دیوارهای آجری و بازشوها و یا وجود اختلاف تراز طبقه در سازه های با دوبلکسی به دلیل قرارگیری پیلوت و واحدهای تجاری در همکف می باشد. در این مقاله با مدل سازی 9 نمونه ستون کوتاه بتن آرمه، بدون افزایش سختی، مقاومت برشی آنها به کمک الیاف کامپوزیتی و فولاد مقاومت بالا افزایش داده شده است. نتایج نشان می دهد به طورکلی مقاوم سازی نزدیک به سطح با فولاد مقاومت بالا، بر روی افزایش سطح زیر منحنی انرژی و ضریب شکل پذیری و مقاوم سازی سطحی بر روی افزایش سطح زیر منحنی بار– جابه جایی و ظرفیت باربری نهایی موثرتر می باشد.

    کلیدواژگان: بتن آرمه، ستون کوتاه، شکل پذیری، منحنی انرژی، فولاد مقاومت بالا، CFRP، مقاوم سازی سطحی، مقاوم سازی نزدیک به سطح
|
  • Samaneh Kazemi, Hamid Zafarani * Pages 1-11

    This work aims at the assessment of the occurrence probability of future earthquakes, taking into account Coulomb stress changing based on the time-dependent models. The influence of Coulomb stress changing on the occurrence probability of characteristic earthquakes is computed, taking into account both permanent (clock advance) and transient (rate-and-state) Coulomb perturbations. Calculations are based to the time elapsed since the last characteristic earthquake on a fault and to the history of the following events. For this purpose, earthquakes with magnitude Mw≥5.8 are applied. Then, by using the BPT and the Weibull models, the occurrence probability of characteristic earthquakes for the 10, 30 and 50 year periods are estimated. The Zagros region included in the rectangle of coordinates 27-31.2 N° and 49.6-53.4 E° and faults such as Kazerun, Borazjan, Sabzpushan, Qir, Karebas and parts of MFF and ZFF were selected. For calculating coulomb stress, Coulomb 3.3 software was used. Time-dependent models called renewal models, have been applied to investigate shocks on single faults [1-2] or in seismic sources that include, in addition to the main fault where the characteristic earthquake is generated [3-4]. In the renewal processes, the conditional probability of the next large earthquake, given that it has not happened yet, varies with time and is small shortly after the last one and then increases with time. In recent years, many models for earthquake occurrence probability were proposed. This study used BPT and Weibull models. Weibull distribution is one of the most widely used lifetime distributions in a wide range of engineering applications [5-6]. The Weibull distribution has also been widely used for specifying the distribution of earthquake recurrence times [7] and follows from both damage mechanics and statistical physics. For computing probabilities with Weibull distribution, γ parameter is needed that is the shape parameter of the distribution, defined as the inverse of the coefficient of variation [8]. Adding Brownian perturbations to steady tectonic loading produces a stochastic load-state process. Rupture is assumed to occur when this process reaches a critical-failure threshold. More recently, the Brownian Passage Time (BPT) model, assumed to adequately represent the earthquake recurrence time distribution, has been proposed to describe the probability distribution of inter-event times [9]. One of the important properties of this model is that with increasing time since the last event, the BPT hazard rate decreases toward a non-zero constant asymptote [9]. The expected recurrence time Tr is the necessary piece of information. Besides, a parameter as the coefficient of variation (also known as aperiodicity) α , defined as the ratio between the standard deviation and the average of the recurrence times, is required. In this study, Cv values 0.5 and 0.75 were used for individual faults as Yakovlev et al. [10]. As we are dealing mainly with events, for which details as fault shape and slip heterogeneity are not known, rectangular faults with uniform stress shop distribution are assumed [11]. For modeling faults and calculating stress changes due to earthquakes, fault parameters like strike, dip, rake, rupture dimensions and receiver fault mechanism are necessary for all the triggering sources. Moreover, the rupture length and rupture width are required. In most cases in this study, these two parameters are indistinctive, so Wells and Coppersmith [12] empirically relations were used for computing rupture length and width. Characteristic earthquake yearly rate was computed by using the relation given by Field et al. [13]. Then by inversing obtained amounts, the mean recurrence time of earthquakes could be computed. The effect of Coulomb stress change on the probability for the future characteristic event can be considered from two viewpoints [14]. The first idea is that the stress change can be equivalent to a modification of the expected mean recurrence time, Tr to the T'r, the second view point works on the idea that the time elapsed since the previous earthquake is modified t to the t'r by a shift proportional to ΔCFF. According to Stein et al. [14], both methods yield similar results nearly. In this study, the alternative between the first and the second view has been decided in favor of the second one. By substitution of t' into the hazard function, the probability modified by the permanent effect (P-mod) of the subsequent earthquakes were calculated. Khodaverdian et al. [15] calculated shear strain rate for the most of the faults in the Iranian Plateau. These values have been used for the calculation of tectonic stressing rate 𝜏̇. For computing the probability obtained from the sum of the permanent and the transient effect (P-trans), we would have aftershock duration (ta) and Aσ parameters. The obtained amount of aftershock duration by using window algorithm for aftershocks according to Gardner and Knopoff method is 1.4 year. Accordingly, by using ta and tectonic stressing rate, Aσ parameter was obtained for each fault. Taking into account the effects of earthquakes stress change, caused changing the results of conditional probabilities that obtained from both models, so that in some of the seismogenic sources increased probability result and in others decreased. The result shows that the probabilities obtained from the sum of the permanent and transient effect are generally smaller than the conditional probabilities obtained from the permanent effect only. This is due to the assumption of constant background rate made for the application of the rate-and-state model. The maximum obtained probability is related to the Kazerun fault that shows the high seismic activity of Kazerun fault. The uncertainties are treated in the parameters of each examined fault source, such as focal mechanism, mean recurrence time, magnitudes of earthquakes, epicenter coordinates and coefficient of variation in the statistical model. Taking into account these uncertainties by Monte Carlo technique will lead to more accurate results.

    Keywords: Probability, Coulomb Stress, Time-Dependent Model, Weibull, BPT
  • Ebrahim Torkanloo, Naser Khaji * Pages 13-22

    Despite of soft computing methods which makes an approximate answers of an inverse problem, hard computing methods makes more accurate answers. Therefore, the hard computing methods used more than soft computing mehods in this type of problems in engineering. Regularization tools is one of the methods to solve this type of problems. The purpose of regularization tools is replacing problem ill-conditioning with a well-posed problem, which can represent reliable responses. This methods are used in inverse problems and earthquake engineering because they did not need any prior information about fault and slip. In this research we proposed a new method for determination of suitable number of modes that involve in the final response that we call it truncating parameter. The method that we tried to examine its validity in this research was spectral decomposition of Green’s function. This method looks like singular value decomposition and can be categorize in regularization tools of solving inverse problems. Illustrative examples are solved to demonstrate the usefulness of the proposed inverse analysis method. Two examples are solved in two-dimensional faulting and one example solved in three-dimensional faulting. Using this proposed method, results of inverse analysis is satisfactory and shows that the proposed method is a reliable method and can be used for real cases. Thus the authors of this article suggest using this method in solving inverse problems of engineering.

    Keywords: Inverse Problem, Regularization, Spectral Decomposition, Singular Value Decomposition, Truncating Parameter
  • Abdollah Sohrabi-Bidar *, Mohsen Isari, Reza Tarinejad, Shahram Maghami Pages 23-34

    The reliable estimation of seismic loads on a structure is required in order to earthquakes resistant design of the structure. The difference in seismic loading in different support points of the structure is important in large and long structures. In general, the lack of access to the reliable time histories in different support points of the structure is the main problem of performing non-uniform excitation analyses. Numerical analyses and calculation of ground motion at different points of the foundation of the structure is one of the ways to achieve the non-uniform support excitation. This paper aims to evaluate the seismic response of Pacoima dam site by performing three-dimensional boundary element analyses in the time domain. The pattern of displacement and amplification due to seismic waves scattering in the dam site are evaluated, and calculated results are compared to the recorded ground motions. The numerical modeling has been executed using the time-domain boundary element that is based on the boundary integral equation of the wave motion. To transform the governing integral equation into the ideal form, it has been discretized in both time and spatial domains. Finally, the obtained equations have been expressed in the matrix form and have been implemented in a computer code named as BEMSA. Earlier, several different examples of wave scattering have been solved in order to show the accuracy and efficiency of the implemented BE algorithm in carrying out the site response analysis of topographic structures. Pacoima dam is a concrete arch dam located in the San Gabriel Mountains in Los Angeles County. The height and the length of the crest of the dam are 113 m and 180 m, respectively. The dam is instrumented by use of 17 accelerometers at different elevations on the dam body and its abutments. For site response analyses, the dam site has been subjected to vertically propagating recorded motions of the Pacoima dam 2001 earthquake with a magnitude of 4.3, depth of about 9 and epicentral distance of about 6 km south of the dam. The medium assumed to be homogeneous linear elastic with density of 2.64 ton/m3, shear wave velocity of 2000 m/s and Poisson's ratio of 0.25. The 3D topographic model has been generated up to a radius of 5000 meters, using 1218 eight-node quadrilateral isoparametric elements with the average effective element size of 25 m in the center part of the model. In order to investigate the seismic response of the canyon, a couple of points at four levels have been considered on both sides of the canyon and the results analyzed in time and the frequency domains. Despite the actual record earthquake motions, which includes the effects of the interaction between the foundation and the dam structure as well as the lake behind the dam, the calculated motions include only the wave scattering by the topography of the canyon. Therefore, although the exact matching of the recorded and calculated motions are not expected, comparison of the motions show that the patterns of the displacements are close together. This phenomenon indicates the importance of valley shape and its important contribution to the dynamic response of the dam site. Assessment of the displacement time histories in various points at both sides of the canyon indicates that the amplitude of the motions decreases when the height of the point increase. Besides, the comparison between the motions of the left and right sides points show have a higher frequency content and a higher shear-wave velocity. 4) In all ten soil groups, the shear wave velocity that due to the non-symmetricity of the canyon, displacement amplitudes in the left side are larger than the right side. Based on the calculated displacements on the various points, the maximum amplitude along the canyon would be changed up to three times. In the frequency domain, different points of the canyon surface have generally the similar amplification patterns. There are two main peaks of amplification in the frequency range of 3-5 Hz and the frequency range of 6-8 Hz. In both sides of the canyon by increasing the height of the points amplification is increased, especially in the frequency range of 6-8 Hz. Moreover, at the same elevation points, the amplification value in the left side is higher than the right side. Comparison of amplification curves of recorded and calculated motions, show the appearance of new peaks of amplification in higher frequency, which could be related to the real conditions of the dam site. Finally, although the motion amplitude in time domain decreases by height increasing on both sides of the canyon, as expected, the amplification in the frequency domain, especially in high frequencies, increases. This insists that the amplification characteristics of a site should be considered and interpreted as a frequency dependence phenomenon. Moreover, the results indicate the spatial variation of the motion due to the topography effect along the canyon, in which the amplitude of peak ground displacements along the canyon has been changed up to three times.

    Keywords: Topography Effects, Boundary Elements, Time-Domain, Numerical Modelling, Pacoima Dam
  • Abolhasan Sharifi, Mohammad Sharifipour * Pages 35-51

    Under small strains (ε≤10−3%), the shear-wave velocity (Vs) and its resultant maximum shear modulus (Gmax) are important parameters in geotechnical engineering calculations and soil dynamics analyses. At present, the shear wave velocity of sand is typically determined using measurement and theoretical analysis methods. The measurement methods include in-situ and laboratory tests. In-situ tests are commonly conducted using a borehole method or a surface wave dispersion analysis method. Laboratory tests include bender element tests, resonant column tests, ultrasonic tests, and dynamic triaxial tests. In this regard, the evaluation of the influences of soil particle size on the dynamic behaviour of soils during wave propagation has been an important issue in geotechnical engineering. Heretofore, the effects of particle size on shear-wave velocities in soils have been examined using various experimental techniques. Most of this research was carried out over a limited range of particle sizes, and the results indicated various effects of particle size on shear-wave velocity: there has been no comprehensive and unambiguous outcome describing the influences of particle size on shear-wave velocity in soils. This research focused on the influences of particle size on shear-wave parameters in a particular type of sandy soil. A digitally controlled triaxial testing machine equipped with bender elements was used. A significant advantage of bender element test is that it can be incorporated in standard soil mechanics apparatuses such as triaxial and oedometer devices, and the approaches for data interpretation are relatively simple. This research aims to experimentally examine the effects of a wider range of particle sizes on shear-wave velocity and other shear-wave parameters, transmitted in dry sandy soils, using a bender element apparatus embedded in a triaxial testing machine under confining pressures of 50-500 kpa. In this research, the sandy soil was initially categorized into 10 different groups using ASTM standard sieves, and all triaxial samples were prepared with an identical void ratio. The void ratio plays a vital role in the determination of the maximum shear modulus of soil. For all ranges of particle size, the maximum and minimum void ratios were determined, in order to provide an acceptable level of comparison among the results, all samples were prepared with a single void ratio of 0.80. In this study, homogeneously identical samples were assumed as a prerequisite for all experiments. Therefore, it was necessary to take practical measures to ensure this crucial prerequisite in all specimens. In this regard, various experimental methods may be used to achieve a desirable void ratio, including the wet and dry tamping method, dry pouring technique, and water precipitation methods. In this study, the dry tamping method was carried out to prepare similar specimens with an identical void ratio. To measure the shear-wave travel time, the frequencies between 5 and 12 kHz were used. The significant results obtained in this study were as follows. 1) With reference to different methods of determining the shear-wave travel time, the results of this research showed that the cross-correlation and peak-to-peak methods gave the most reasonable values of the shear-wave velocity. 2) The outcomes revealed that, in a particular soil sample, as the excitation frequency increases, the received signals possess significant amounts of higher frequency components, and surprisingly, these signals are similar in shape. 3) Particle size influences the shape of the received signals, such that the frequency content of received signals in both fine and coarse grained soils are quite similar, but medium-sized soils increased with increasing confining pressure. 5) The results showed that the increasing size of soil grains leads to increased shear-wave velocity in a particular range of particle sizes, and decreased shear-wave velocity in the other range. 6) Although the effects of particle size on shear-wave velocity were the main subject of this study, it seems that this factor alone cannot dominate, and other factors must also be considered, such as the type and shape of particles and the surface roughness.

    Keywords: Shear-Wave Velocity, Soil Particle Size, Bender Elements Test, Shear Modulus, Small-Strain Behaviour
  • Iman Golpazir, Abbas Ghalandarzadeh *, Mohammad Kazem Jafari Pages 53-67

    Isolating the earth structures such as retaining walls, bridge abutments and buried pipes using the compressible materials is a novel solution to reduce the lateral earth pressure. In this technique, a layer of the compressible material with relatively small stiffness and limited thickness is implemented between the retaining wall and the backfill. This material acts as a seismic buffer due to its high compressibility, which absorbs the excess dynamic earth pressure significantly and attenuates the transmitted force to the retaining structure. Choosing the appropriate materials for construction of seismic buffers is based on their physical and mechanical properties as well as cost-effective considerations. Most of the previous studies were focused on some specific materials such as expanded polystyrene (EPS) foam blocks and tire chips. This paper investigated the performance of polymeric seismic buffers made from Polyurethane (PU) foam on seismic response of non-yielding retaining walls. PU foam has appropriate properties and eliminates some of limitations on materials used in previous studies. The purpose of current study was to evaluate the applicability of PU foam as a new option for construction of seismic buffers with regard to its benefits. Hence, the behavior of non-yielding retaining walls was investigated in two conditions of with and without presence of the seismic buffers by conducting of a series of 1g shaking table tests. Seismic buffers included PU foam blocks, which were prepared by injecting foam into the cubic molds and spraying a certain amount of water on the specimens. A total of 13 tests were carried out on two models (retaining wall with and without seismic buffer) with changing the input base acceleration from 0.07g to 0.46g. The input motion was a horizontal sinusoidal excitation with a constant frequency of 3.6 Hz, which was applied for 10 seconds to the longitude direction of the model. The model responses including wall force and backfill soil displacement were measured during the excitation in each test. The results showed that the implementing seismic buffers made from PU foam reduce the total and dynamic horizontal wall forces on average of 30% and 45%, respectively. The force attenuation and backfill soil displacement have an inverse relationship to each other. For an equal Normalized compressible inclusion stiffness, this type of foam has a better performance in comparison with similar materials such as expanded polystyrene foam (EPS). Moreover, it is identifying that the force attenuation is not uniform along the height and the maximum attenuation occurs at the top of the retaining wall. The force distribution is triangular for static conditions. As the peak base acceleration is increased and the contribution of dynamic loads on upper elevations is increased, the force distribution becomes nonlinear. Therefore, at earthquakes with moderate to high intensity, the point of application of total horizontal force is transferred to the upper elevations of the retaining wall. Moreover, it is revealed that the efficiency of this technique increases for moderate to high-intensity earthquakes (acceleration amplitude more than 0.24g).

    Keywords: 1g Shaking Table Test, Retaining Wall, Erath Pressure, Seismic Buffer, Polyurethane Foam
  • Majid Farrin, Masoud Hajialilue-Bonab * Pages 69-85

    A series of 1 g shaking table tests were performed to investigate the response of Tabriz subway tunnel, a circle-type tunnel embedded in dry sand, under sinusoidal excitations. In prototype, the subway tunnel with 9.2 m diameter and 0.35 m thickness was embedded in a soil layer. Two reduced-scale 1 g shaking table models, designated as FF and SF, were constructed in 1/45 scale. The FF was constructed to study the seismic response of the soil layer in free field condition, while the SF model includes a subway tunnel to study its seismic response during different excitations. The shaking table of Tabriz University with a platform of 3m×2m and one-degree of freedom was used to induce the desired excitations to models. The table can carry up to 6 tones and can reach acceleration levels up to 1.5 g with peak displacements of ±100 mm. A laminar shear box was designed in Tabriz University that includes 20 aluminum frames with dimensions of 1320×814×860 mm (L×H×W). In order to reduce the friction between the layers and simulate the displacement of soil layers, ball bearings were used between two adjacent frames. In this box type, the lateral boundary effect on the seismic response of the soil layer is reduced. The simulation laws for 1 g shaking table tests were utilized in the current study. Based on the simulation laws and the size of the laminar shear box, the prototype to model scale factor was considered to be 45. Therefore, the tunnel model was constructed by aluminum alloy with a diameter of 195.5 mm and thickness of 1.5 mm. Uniform dry sand provided from Qomtapeh was used in this study. During the construction, the tunnel and all the embedded instruments were placed in the model. To avoid any interaction of the tunnel with the laminar shear box, the tunnel was selected shorter than the box width. Two PVC circular plates were placed at both the tunnel ends to avoid the sand entrance into the tunnel model. To simulate the effects of friction on the soil–tunnel interaction, the outside surface of tunnel was covered by sand particles using epoxy coating. For reaching the same target relative density (Dr=65%) during the construction of models, the bulk unit weight was controlled to be constant for all layers. Seven strain gauges were installed on the tunnel surface to monitor the behavior of the tunnel. Five accelerometers were placed in different levels of the model to record the acceleration in the soil. Besides, two LVDTs were placed on the top of the model to measure the soil surface settlement. A 32-channel dynamic data logger was used to record and transfer all the measured data to a personal computer. Two types of excitation were applied to the models by shaking table: I) irregular waves with high frequency content and low amplitude to determine the natural frequency of the models, and II) harmonic waves with low frequency content and high amplitude to study the seismic response of the tunnel. Two peak ground accelerations of 0.35 g and 0.50 g with frequencies of 1, 3, 5 and 8 were applied to the models at this stage. The recorded data highlighted significant aspects of the dynamic response for the above type of underground structures: - The results show that the ground response of the free field model is different from the tunnel-soil model and the natural frequency of the free field is slightly larger than soil-tunnel model. This indicates the effect of the tunnel on the applied frequency to the system. - The recorded horizontal accelerations at different levels indicate that accelerations are amplified towards the soil surface and the tunnel acts as an obstacle against the propagation of shear waves upward. - According to the results, the dynamic response of circular tunnels can be split into two stages: transient stage and steady-state cycles. During the transient stage, which lasts for the first few cycles, the tunnel reaches a dynamic equilibrium configuration. The transient stage is followed by the steady-state cycles, during which the forces in the tunnel lining oscillate around a mean value. - For all tests, bending moments and lining deformations increase by increasing in maximum base acceleration, but the location of the highest and the lowest amounts stays the same. - According to the results, for A=0.35 g, maximum bending moment is constant or reduces a little by increasing frequency; however, for A=0.50 g, maximum bending moment reduces sharply by increasing of the loading frequency. The results show that in the earthquakes with high PGA, the dynamic bending moments caused in the tunnel lining are larger than cracking moment that can lead to a serious damage to the lining in combination with other loads.

    Keywords: Subway Tunnel, Tabriz City, Physical Modeling, Shaking Table, Seismic Response
  • Gholamreza Legzian, Behrokh Hosseini Hashemi *, Mahmood Hosseini Pages 87-102

    In conventional design methods, buildings are designed such that during an earthquake materials of the structure can enter into inelastic zone in all stories of the building. The problem with this method is that in a regular n-story building with rigid diaphragm, which has 3n degrees of freedom, the inelastic behavior subjected to future earthquakes cannot be estimated easily. Therefore, in spite of the detailed design, it is likely that the stories’ displacements have an inappropriate distribution under a particular earthquake and these inelastic displacements may be concentrated in certain stories and lead to failure of those stories and eventually collapse of the entire structure. To overcome this difficulty, in the current article, a structural system with one or two rocking rigid core(s) and link beams is introduced for n-story buildings, and a simplified method is presented for its seismic analysis. Because of the existence of the rigid core(s) the entire building has a behavior very similar to a one-degree of freedom system in each of the main lateral directions. In this way, estimating the behavior of the structure under the influence of the possible future earthquakes will be easier with a higher level of precision. In addition, concentration of plastic deformations in columns of some stories of the building, and creation of soft stories is not likely in the proposed system. To show the efficiency of the proposed system and its simplified analysis method, a 15-story steel building has been considered, once with one rigid core, and once more with two rigid cores. The rigid core is consisted of a one bay by one bay braced frame, designed to remain quite elastic under the seismic loads. The connections between the core and the building’s frames are all hinges at all stories to accommodate the relative rotation between the core and the surrounding frames during an earthquake, leading to the vibration of the building to take place basically in the first mode in each lateral direction. In case of two rigid core there are some link beams between them with capability of plastic deformation in shear, by which the integrity of the system and its stability will be provided. The link beams are designed in such a way that result in the minimal amount of bending moment in the rigid core to make it oscillate basically in its first mode and therefore better do its main duty, which is creating the uniform drift in all stories of the building, and eliminating the higher modes effects, resulting a more reliable seismic behavior of the building. For decreasing the amount of shear forces imposed to the link beams, the hinge supports of the two rigid cores has been shifted to their external sides; since in this case, the distance between the support is maximum, leading to minimum shear force in link beam, which is around 58% of its values in case of hinges at the middle. Regarding that the proposed system behaves similar to a one-degree-of-freedom system, for its dynamic analysis, first the equations of motion have been developed for the n-degree-of-freedom system and then by dynamic compatibility conditions, the mass and height of the equivalent SDOF system have been obtained. Besides, stiffness and yielding displacement of the equivalent SDOF system have been determined so that they result in hysteretic loops similar to the original structure. To investigate the inelastic seismic behavior of the original building and its equivalent SDOF system, the three-component accelerograms of a set of 15 selected earthquakes, including six ones happened outside Iran, four ones of Iranian earthquakes, and five artificial ones, have been used, all corresponding to the soil type III. The PGA values of all records have been scaled to 0.5 g. Finally, elastic and inelastic seismic responses of the original 15-story building and its equivalent SDOF system have been compared. Comparisons show that there is less than 3% and 11% differences in elastic and inelastic responses, respectively.

    Keywords: Degrees Of Freedom, Rocking Motion, Rigid Core, Static Inelastic Analysis, Dynamic Inelastic Analysis, Equivalent SDOF System
  • Elahesadat Hashemi *, Abdolreza Sarvghad Moghadam, Nader Khajeh Ahmad Attari, Seyed Amirhossein Hashemi Pages 103-118

    In masonry buildings, walls are the main structural members that deal with lateral forces. For seismic evaluation and reinforcement of these walls, there is no appropriate algorithm for the modelling of these unreinforced walls as well as single and double sided shotcrete reinforced walls. The necessity of a highly specialized software has made the behavior analysis, seismic optimization or design of buildings having reinforced or unreinforced masonry walls to be impractical for most engineers. Development of a process for the use of common software will solve the problem and also make it possible to model reinforced and unreinforced masonry walls in semi-frame building or engineering. In this study, by considering the laboratory results of 12 reinforced and unreinforced walls subjected to cyclic load, the optimal parameter values for the best calibration of the modeling results with the existing laboratory results have been extracted. The present research has modelled unreinforced and reinforced masonry walls. Given that most common designing software used by construction engineers lack proper elements that enables them to easily model masonry elements just like concrete and steel elements; thus, it is not possible to directly analyze the building in which there are masonry wall members. The solutions that are commonly used are either the use of complex modelling software which are not suitable for use in daily engineering offices applications. The behavior of walls are estimated in individual software and their effect is included in common analytical software that will surely cause a decrease in the accuracy of the results due to the lack of a possibility for considering the interactions. Results of the research are briefly as follows: 1. Extraction of parameters optimal values for the best calibration of software modelling results with laboratorial results. 2. Evaluation of the modelling capability of unreinforced and shotcrete single and double sided reinforced walls in common engineering analysis and design software The main parameters that control the cyclic behavior of masonry walls in software with laboratorial results are as follows: 1. The best match with cyclic curves obtained from unreinforced brick walls experiments is obtained when in the computer model, isotropic masonry behavior, Takeda masonry hysteresis cycle type, shell section and 45 degree masonry element angle are obtained by considering the effect of dead load and applying Drager-Prager coefficients. 2. The best match of cyclic curves obtained from analytical results with the results obtained from single sided reinforced brick walls experiments, is obtained when the behavior of masonry and concrete materials is considered as isotropic, the behavior of rebar is considered "uniaxial", type of masonry and concrete materials hysteresis cycle is considered as Takeda and rebar are considered as kinematic. The section type for each of the three types of shell materials must be 45 degree for masonry materials, 0 degree for concrete materials and 0 and 90 degrees for horizontal and vertical rebar layers. The effect of dead load and the effect of Drager-Prager coefficients for masonry and concrete materials are also considered. 3. The best match for cyclic curves obtained from analytical results with double sided reinforced experiments is achieved in the characteristics of the materials, according to line 2. Naturally, in this state, characteristics for two concrete layers, two horizontal rebar layers and two vertical rebar layers are used. In the second section of the results, we have evaluated the modelling capability of unreinforced and reinforced walls in common analytical and design engineering software. Given that the six main parameters of strength and yield drift, maximum strength and its corresponding drift and the ultimate strength and drift are the main indicators in the curve of the members' behavior, in this paragraph, the results of the comparison of analytical estimation with laboratorial estimations about these six fold parameters are given. In the final section of this research, the efficiency of the masonry walls optimization methods has been evaluated. For proper selection of optimization methods, having a view of the probable effect of each method on the six fold behavioral characteristics can be a big help for a designer. Therefore, the designer can select a suitable option to improve a behavioral weakness in a wall. In this section, the ratio of each parameter in the reinforced wall to that parameter's value in its corresponding reference wall has been briefly given. 1. Single sided shotcrete reinforcement, increases the strength by 1.5 to 3 times the reference samples. While the analytical estimation of this value is about 1.5 to 3.5 times the laboratorial values. 2. Single sided shotcrete reinforcement increases the drift by 1.5 to 3 times the reference samples. While in the analytical estimation, this ratio has been decreased or increased by almost 50%. 3. Double sided shotcrete reinforcement increases the strength by 3 to 7 times the reference samples. While the analytical estimation of this value is about 2 to 3 times the laboratorial values. 4. Double sided shotcrete reinforcement increases the drift by 0.6 to 1.7 times the reference samples. While in the analytical estimation, this ratio has been decreased by about 30%.

    Keywords: Masonry wall, Seismic evaluation, Shotcrete reinforced wall, Modeling process, Shell element
  • Mahboobeh Aboutalebi, Afshin Meshkat-Dini *, Jafar Keyvani Ghamsari Pages 119-137

    This research investigates the trend of changes in seismic response of tall hybrid framed tube skeletons according to the obtained analytical results through conducting nonlinear dynamic response history analyses (NL-RH analyses) under three components near-field earthquake records. For this purpose, three 30-story structural models with framed tube resistant skeletons were selected and designed. The first resistant skeleton is classified as the basic model with a framed tube structural system. The second and third models are introduced by embedding of multi-level configurations of large scale zipper elements on the basic model, which connected to one or two columns in the first story. The existence of a designed multi-level arrangement of large scale zipper elements prevents the formation of expanded plastic mechanism and also relatively blocks the occurrence of any possible buckling in the lower-stories columns. The connection of the large scale zipper elements to the columns was defined rigid. The studied structures were loaded and designed in accordance with the notified provisions recommended by the Iranian national building codes (divisions six and ten) as well as the standard 2800 (fourth edition) [1-3]. The assumed hysteresis loops related to the possible formation of plastic hinges in structural elements have been adapted from the FEMA 356 [4]. These notifications were described to clarify the assigned non-linear behavior of the elements of each studied structure. All of the analyses were conducted through SAP 2000 software [5]. To perform nonlinear dynamic response history analyses, an ensemble of five earthquake records including one far-field and four near-field ground motions contain forward-directivity effects, were selected and scaled according to the fourth edition of the Standard 2800. The main criterion in choosing near-field records is the existence of distinct coherent pulses caused by the strong rupture directivity effects, which are emerged in the ground velocity time history [6-7]. In this research, a comprehensive numerical assessment was accomplished on the seismic response parameters of the studied structural models. The analytical evaluations are focused on the maximum inter-story drift ratios, the maximum relative velocity and absolute acceleration of the floors (defined at the center of mass CM), maximum axial and shear force resultants, the upper bound of flexural and torsional moment of the columns, and also the maximum rotation of the formed plastic hinges. By comparing the configuration of the plastic hinges formed in columns and beams, it is resulted that the presence of the large-scale zipper elements in the lower four stories of the structure relatively causes less damages as well as a greater time domain of dynamic stability. The use of these elements in the perimeter bays of tall framed tube structures results a more uniform distribution of the axial and shear forces, as well as bending and torsion moments in the peripheral columns. It is also resulted a noticeable reduction for the maximum inter story drift ratio of floors, the maximum relative velocity and absolute acceleration of floor levels. Moreover, by comparing the total weight of studied models, it is clear that the architectural embedding of the large-scale zipper elements would cause a slight increase for this factor while reducing the average relative displacement near to 15% as well. REFERENCES 1- Iranian National Building Code (2014) Design Loads for Buildings - Division 6. Tehran, Iran (in Persian). 2- Iranian National Building Code (2014) Steel Structures - Division 10. Tehran, Iran (in Persian). 3- Iranian Standard No. 2800 (2014) Iranian Code of Practice for Seismic Resistant Design of Buildings. Fourth edition. Tehran, Iran (in Persian). 4- FEMA (1998) Prestandard and Commentary for the Seismic Rehabilitation of Buildings, FEMA 356. Federal Energy Management Agency. 5- SAP 2000, Integrated Software for Structural Analysis and Design. Computers & Structures, Inc., Berkeley, California. 6- Mukhopadhyay, S., and Gupta, V.K. (2013) Directivity pulses in near-fault ground motions—I: Identification, extraction and modeling. Soil Dynamics and Earthquake Engineering, 50, 1-15. 7- Mukhopadhyay, S., and Guptaa, V.K. (2013) Directivity pulses in near-fault ground motions—II: Estimation of pulse parameters. Soil Dynamics and Earthquake Engineering, 50, 38-52.

    Keywords: Tall Building, Framed Tube, Large-Scale Zipper Element, Near Fault, Panel Zone
  • Ali Kargaran, Ali Kheyroddin * Pages 139-150

    Existence of short columns in buildings and bridges is a serious challenge in earthquakes. This destructive phenomenon occurs due to the difference in length of the column at a certain level that is mainly because of architecture consideration, such as the placement of building on a slop or restriction of column with nonstructural walls and openings or difference in story level in structures because the existence of mezzanine floor. Short columns have brittle shear failure in comparison with tall columns. This kind of failure causes a reduction in the energy dissipation capacity of the column. Shear failure is the most critical failure mode in RC short columns due to the none-observance of seismic details or sufficient transverse reinforcements against seismic loads. As concrete tensile stresses reach concrete tensile strength and the diagonal cracks appear, the concrete cover is detached and starts to shed. Then the failure and openings of transverse reinforcements and as a result the buckling longitudinal reinforcements occur. The above process leads to the disintegration of the core concrete and the sudden fracture and embrittlement of the column. In externally bonded reinforcement by FRP composites, FRP materials are different from the materials of the RC (concrete and steel) parts. The use of FRP is limited to high temperatures and has a low resistance to fire. On the other hand, strengthening with FRP composite materials is economically expensive. Mostly, High Strength Steel (HSS) bars have been used in the design and construction of the RC structures and not in strengthening. Today, due to the growing population and increased demand for raw materials and energy, solutions have been taken to optimize standards and to save on consumables, production and cost reduction. Steel reinforcements are one of the most widely used building materials with a huge number of applications in a variety of structures. Due to the considerable cost of using steel in structures, the use of HSRs has been considered as one of the major options. The use of HSRs has economic justification because of reduced human resources, reduced consumption of materials, time and manufacturing efficiency, reduced environmental damage because of the optimal utilization of materials and reduced transportation costs. Because of the greater tensile strength of these bars than ordinary ones, it leads to a brittle failure in concrete prior to rebar flaking. It, therefore, limits their application in regions with high seismic hazard. In this paper, with the modeling of nine RC short columns, without increasing the stiffness, their shear strength has increased with the help of composite and high strength steel. Two techniques were used to strengthen the diameter of the short columns against seismic loads. These techniques include EBR with FRP composite materials and NSM with HSS. The results show that in general, near surface mounted with high strength steel is more effective on increasing the dissipated energy and the ductility factor and externally bonded retrofitting is more effective on the increase of the load-displacement sub-curve and the peak load capacity.

    Keywords: Reinforced Concrete, Short Column, Ductility, Hysteretic, Curve, HSS, CFRP, EBR, NSM