فهرست مطالب

Iranian Journal of Materials science and Engineering
Volume:17 Issue: 3, Sep 2020

  • September In Press
  • تاریخ انتشار: 1399/05/26
  • تعداد عناوین: 12
|
  • S. Mortezaei, H. Arabi*, H. Seyedein, A. Momeny, M. Soltanalinezhad Page 1

    Dynamic Recrystallization (DRX) is one of the likely mechanisms for fine-graining in metals and alloys. The dynamic recrystallization (DRX) phenomena occurs in different thermo-mechanical processing (TMP) conditions for various metallic materials. DRX depends on various materials and thermo-mechanical parameters such as temperature, strain rate, strain, stress and initial microstructure. in the present study, the restoration mechanism of the 17-7PH stainless steel has been investigated using a hot compression test under different conditions of thermo-mechanical treatment. The microstructural characteristics and the behavior of the hot deformation of the under study steel are investigated using flow curves and microstructure images obtained from optical microscopy. The results show that the maximum and steady state stresses are significantly affected by the strain rate and the deformation temperature. So that, the flow stress increases with decrease in the deformation temperature and increase in the strain rate. Microstructural studies confirm the occurrence of DRX as a restoration mechanism in the microstructure for the two phases of austenite and ferrite.

    Keywords: Dynamic Recrystallization, Thermo-mechanical processing, 17-7PH Stainless steel, Compression test
  • A. Beigei Kheradmand, S. Mirdamadi*, S. Nategh Page 2

    In the present study, the effect of adding minor amounts of scandium and zirconium elements to the 7075 alloyon the re-crystallization behaviour of one aluminium alloy (7000 series) was investigated. For this purpose, two kinds of Al-Zn-Mg-Cu-Sc-Zr alloys with the same amount of Zr and different amount of Sc were prepared. Homogenization durations and temperatures of alloys after alloying were obtained by DSC analysis and optical microstructure observations. The results showed that the optimum homogenization temperatures for Al-Zn-Mg-Cu-0.05Sc-0.1Zr and Al-Zn-Mg-Cu-0.1Sc-0.1Zr alloys were 5000C and 4900C respectively, and the optimum duration for both alloys was 12hours. After homogenization of alloys, the re-crystallization behaviour of the alloys was investigated by Brinell hardness test. Obtained results showed that although the starting re-crystallization temperature for both alloys was similar in 2 hours, but it was 130°C for alloys with 30% forming, and 120°C for alloys with 50%forming and recrystallization temperature for Al-Zn-Mg-Cu-0.1Sc-0.1Zr alloy was 350in 2 hours. Despite what was expected, the hardness of Al-Zn-Mg-Cu-0.05Sc-0.1

    Keywords: Recrystalyzation, Al-Zn-Mg-Cu-Sc-Zr, 7000 series aluminium
  • P. Shahsavari, B. Eftekhari Yekta*, V. Marghussian Page 3

    Strong glass-ceramic foams with a compressive strength of 20 MPa were prepared by adding various amounts of Fe2O3 to a soda lime-based glass composition, and SiC as a foaming agent. The foams were prepared by firing the compacted samples in the range of 750–950°C for different soaking times. The crystallization behavior of the samples was investigated by Simultaneous Thermal Analysis (STA), Scanning Electron Microscope, and X-Ray Diffractometer (XRD). Based on the results, solid solutions of pyroxene groups were crystallized by the surface mechanism, between 730˚C and 900˚C during the firing of the specimens, and their amounts increases with increasing of the added iron oxide. Besides, we found that Fe2O3 neither acts as a nucleant for pyroxene nor as an oxidizer for SiC. The results also showed that the compressive strength as well as the crystallization behavior of the foams was influenced by the presence of the SiC particles.

    Keywords: glass-ceramic foam, pyroxene, crystallization
  • L. Alves*, A. Nogueira, S. De Barros Page 4

    The construction sector is responsible for relevant environmental impacts and one of its most crucial points is the use of concrete. Geopolymers represent the most promising green and ecological alternative for common Portland cement and cementitious materials, due to its proven durability, mechanical and thermal properties. This work presents an experimental and comparative study of adhesion at the fiber-matrix interface between glass fibers and carbon fibers added to the geopolymer matrix. This analysis was performed by pull-out test, whereby it was found that the greatest efficiency was obtained by reinforcing with the glass fibers, incorporated at 2 mm in the geopolymer matrix. As results, the adhesion between the fibers and the geopolymer structure can be assessed, as well as the optimum length of application.

    Keywords: Carbon fibers, Composites, Geopolymers, Glass fibers, Pull-out test
  • M. Monzavi, Sh. Raygan* Page 5

    Low-grade iron ores contain many impurities and are difficult to upgrade to make appropriate concentrates for the blast furnace (BF) or direct reduction (DR) technologies. In this study, the beneficiation of an Oolitic-iron ore (containing 45.46wt% Fe2O3) with magnetization roasting by non-coking coal (containing 62.1wt% fixed carbon) under a stream of argon gas was investigated. Then, a 2500 Gaussian magnet was used for dry magnetic separation method. The effects of roasting time, ore particle size and reaction temperature on the amount of separated part and grade of the product were examined. It was found out that the hematite inside of ore could almost be completely converted into magnetite by stoichiometric ratio of coal to ore at the roasting temperature of 625 °C for 25 min. Under the optimum condition, a high amount of magnetic part of the product (72.22 wt%) with a grade of 92.7% was separated. The most important point in this process was prevention of reduced ore from re-oxidation reaction by controlling roasting atmosphere, time and temperature. In addition, different analytical methods such as X-ray fluorescence (XRF), X-ray diffraction (XRD), differential thermal analysis (DTA), thermogravimetric analysis (TG) and scanning electron microscopy (SEM) were applied to investigate and expound the results.

    Keywords: Low-grade iron ore, Non-coking coal, Magnetization roasting, Magnetic separation
  • A. Thakur*, G. Reddy Page 6

    Mercury, one of the common pollutants in water, is known to affect human health adversely upon exposure. It is released in water not only by various natural processes but also by human activities. Methods developed so far for the detection of mercuric ions in water have limitations like sensitivity range, complex setup, skillful operation etc. Silver nanoparticles, due to unique properties, have been explored by researchers to develop better detection systems.  Stable silver nanoparticles can be easily synthesized by methods of green chemistry, its reaction with mercuric ion can be easily observed by changes in color and UV-Vis spectra. The absorbance data from UV-Vis spectra can also be used in quantifying mercury concentration. In this paper, stable silver nanoparticles synthesized using silver nitrate as precursor, sodium lignosulphonate (LS) as reducing and stabilizing agent under microwave radiation are explored for detection of mercuric ions in water. Formation of AgNP was confirmed by UV-Vis band at 403.5nm. The intensity of this band showed a proportional decrease with increasing Hg+2 concentration. Hg+2 ions were detected by a distinct color change at higher concentration of Hg+2 also.  The limit of detection (LOD) calculated from the observed absorbance data to be 0.7 ppm.

    Keywords: Mercury, Silver nanoparticles, Lignosulphonic acid, Spectrophotometer
  • M. T. Basha G, V. Bolleddu* Page 7

    The microstructural characteristics, mechanical properties, and wear characterization of air plasma sprayed coatings obtained from Carbon nanotubes (CNTs) reinforced Al2O3-3wt%TiO2 powders were examined at different loading conditions and different percentage proportion of CNTs. The CNTs in the proportion of 2, 4, and 6wt% were used as nanofillers to modify the properties of coatings. The uniform dispersion of CNTs throughout the powder particles can be observed from the SEM micrographs. The porosity of the microstructure of the coatings was measured by image analysis. Also, the mechanical properties such as microhardness and surface roughness were measured by microhardness tester and profilometer, respectively. The wear tribometer was used to analyze the tribology of the coatings by varying different parameters. The different loading conditions used were low load (0.5 kgf), moderate load (1.0 kgf), and elevated load (1.5kgf), respectively. The microhardness showed a slight increase with an increase in the percentage of CNTs proportion. Similarly, the surface roughness value showed a decreasing trend, since the CNTs were filled in the pores. From wear tests, it was observed that the coefficient of friction and wear rate were very less at 6wt% CNTs and 1.5kgf load. This was mainly due to the bridging of CNTs in between the splats. This implies that CNTs were one of the most suitable additives for improving the microstructural and tribological characterization of the ceramic coatings.

    Keywords: Carbon nanotubes (CNTs), Wear Behavior, Coefficient of Friction (COF), CNT bridging
  • B. Mirzakhani*, Y. Payandeh, H. Talebi, M. Maleki Page 8

    In this paper, the effect of two-step precipitation hardening on the mechanical properties of Al-3.7Cu-1Mg was investigated. For this meaning, some specimens were subjected to the first step aging at 175, 190 and 205°C for 2 h, once the samples solution treated at 500°C. To have stable precipitates uniformly distributed in the microstructure and to reduce the heat treatment time, the second step was implied at 65°C. The tensile and hardness tests were performed at ambient temperature immediately after aging. The results indicated that depending on the first step temperature, the second aging time affects the alloy mechanical behavior in different aspects. A factor named SNMP introduced to determine the cycle giving the best mechanical properties. The strength and elongation increase 1.5 and 2 times respectively; compared to the values reported in the DIN EN 755-2 standard by performing the two-step aging cycle, consisting of the first-stage at 175°C and the second step at 65°C for 10 hours. Moreover, using the proposed two-step aging, the heat treatment time was reduced considerably compared to the conventional precipitation hardening process.

    Keywords: Aluminum alloy, Two-step aging, Mechanical properties, SNMP, Aging time
  • N. Mohammed*, H. F. Dagher Page 9

    Thin films of meta-cinnabar mercuric sulfide (β-HgS) nanoparticles (NPs) was prepared by pulsed laser ablation (PLA) utilizing a pellet of cinnabar mercuric sulfide (α-HgS) was immersed in distilled water (DW). Q-switched Nd:YAG laser of 1064 nm wavelengths with repetition rate (1hz) and fluency (1.5 J/cm2) applied for ablation. Structural, morphological and particle sizes of the β-HgS NPs are invastigated by analyzing XRD, AFM, SEM and TEM measurements. Their crystal structure is transformed from hexagonal (wurtzite) of the α-HgS target material to cubic (zinc blende) β-HgS NPs. The optical properties of the β-HgS NPs are measured by UV–visible spectrophotometer. The direct band gap is calculated to be (2.45eV) of small particles (4-6.2nm) moreover, the band gap value of smallest particles (1-4nm) is (3.47eV) according to the optical transmission spectra

    Keywords: Pulsed laser ablation, Nanocrystalline, Mercury sulfide, Cinnabar, Metacinnabar
  • M. Hamdi, H. Saghafian Larijani*, S. G. Shabestari, N. Rahbari Page 10

    Aluminum matrix composites are candidate materials for aerospace and automotive industries owing to their specific properties such as high elastic modulus (E), improved strength and low wear rate. The effect of thixoforming process on the wear behavior of an Al-Mg2Si composite was studied in this paper. During applying thixoforming process, casting defects  such as macrosegration, shrinkage and porosity are being effectively reduced. These advantages are sufficient to attract more exploration works of thixoforming operation. Thermal analysis of the composite, as-cast microstructure, wear surface and subsurface area of the thixoformed alloy were  investigated. Wear behavior of  the specimens were examined using a pin-on-disk machine  based on ASTM-G99, at the applied loads of 25, 50 and 75 N and the constant sliding velocity of 0.25m/s. The worn surfaces and subsurfaces were examined by scanning electron microscopy (SEM). The experimental results indicated that the thixoformed specimens exhibited superior wear resistance than the as-cast alloy. Moreover, the dominant wear mechanism is an adhesive wear followed by the formation of a mechanical mixed layer (MML). However, a severer wear regime occurs in the as cast specimens compared with the thixoformed ones

    Keywords: Al-Mg2Si Alloy, SIMA, Semi-solid forming, Thixoforming, Wear test
  • V. Usov*, M. Rabkina, N. Shkatulyak, E. Savchuk, O. Shtofel Page 11

    The aim of this study is to establish the correlation between the impact strength and texture, fractal dimensions of fractures , fractal dimensions  obtained from load-time diagrams  reflecting the applied load (P) dependence on time (τ) during the Charpy impact test of 20K steel at various temperatures as well as the comparison of abovementioned fractal dimensions. The tests were carried out on a vertical impact testing machine with a multi-channel system for high-speed registration of forces and strains, as well as a heating and cooling system for samples in a wide temperature range. The load vs. time (load dependence on time) diagrams were obtained at an impact velocity of  = 4.4 m/s at temperatures of -50, +20, + 50°С. The Charpy standard samples of 20K steel (analogue to DIN17175, class St45.8) were cut in various directions out of a 12 mm thick the destroyed tank shell of a distillation column for oil refining. It was established that the behavior of both abovementioned fractal dimensions depending on the cutting direction and test temperature coincides qualitatively. The trend of decreasing in fractal dimension with a more viscous nature of fracture was found. The effect of texture is discussed.

    Keywords: : impact tests, impact toughness, fractal dimension, texture, diagram of load changes depending on time
  • R. Niazi, E. Tohidlou*, H. Khosravi Page 12

    The effects of erbium (Er) addition at various weight percentages (0-0.6 wt.% at an interval of 0.2) on the microstructural characteristics, tensile response and wear properties of as-cast Al-7.5Si-0.5Mg alloy were evaluated. The microstructure of samples was examined by X-ray diffraction, optical microscopy and scanning electron microscopy. The obtained results demonstrated that the incorporation of erbium obviously decreased the α-Al grain size and eutectic Si, and altered the Si morphology from plate to semi-globular. Further addition of erbium (> 0.2 wt.%) did not alter the eutectic morphology and size. Moreover, the Al3Er phase was also observed in the eutectic region after modification. Out of the erbium contents used, 0.2 wt.% erbium showed the best influence on the tensile and wear properties. Compared with those of unmodified specimen, the values of ultimate tensile strength and elongation were enhanced by 31% and 39%, respectively with the introduction of 0.2 wt.% erbium. Additionally, a remarkable enhancement in the wear properties was observed with the addition of 0.2 wt.% erbium.

    Keywords: Al-Si-Mg alloy, Erbium, Eutectic Si, Microstructure, Tensile properties, Wear