فهرست مطالب
Journal of Mining and Environement
Volume:11 Issue: 4, Autumn 2020
- تاریخ انتشار: 1399/09/24
- تعداد عناوین: 20
-
-
صفحات 967-976
-
صفحات 1007-1022
-
صفحات 1095-1113
-
صفحات 1191-1203
-
Pages 935-948
In this paper, we report a geospatial assessment of the selected mine sites in the Plateau State, Nigeria. The aim of this work is to determine the impact of mining on the terrain as well as the Land Use/Land Cover (LULC) of the host communities. The Shuttle Radar Topographic Mission (SRTM) is used for the terrain mapping. The derived impact of mining on LULC between 1975 and 2014 is determined by classifying the relevant Landsat imageries. The digital terrain map reveal that the mining activity is not well-coordinated. Hence, the parts of the mine sites that are rich in the desired minerals are punctuated with low depth, while the other parts have high terrain as a result of the haphazard mining activity. The analysis of the LULC change show that the degraded land (DL), built-up area (BU), water bodies (WB), and exposed rock outcrop (RO) increase by 15.68%, 4.68%, 0.06%, and 14.5%, respectively, whereas the arable farmland (FL) and forest reserve (FR) decrease by 28.29% and 6.63%, respectively. Mining has adversely affected the natural ecology of the studied area. Therefore, the mine sites should be monitored, and their environmental damages should be pre-determined and mitigated. There should be regular inspections to keep these activities under control. The existing laws and regulations to conserve the natural ecosystems of the host communities should be enforced to curtail the excesses of the operators of the mining industries. Restoration of the minefields to reduce the existing hazards prevent further environmental degradation, and facilitating the socio-economic development of the area is also suggested.
Keywords: Geospatial, terrain, SRTM, LULC, classification -
Pages 949-965
Traditionally, the earthmoving operations have been developed based on the minimum cost per production criterion. Nowadays, due to the negative impacts of the emissions on the environment, there is an increasing public awareness to reduce the emissions from the earthmoving operations. Different management strategies can be employed to reduce emissions, amongst other things, which can also result in a reduction in the operational costs. This paper aims to examine the cost and emissions related to the earthmoving equipment from an operational standpoint. The queue theory is used in order to demonstrate that the optimum cost per production fleet size and the optimum emissions per production coincide. The linear and non-linear server utilization functions are employed to present a general optimization proof independent from any specific case study. The findings of this research work provide a better understanding of the relationship between the emissions and cost and how the under-trucking and over-trucking conditions affect the productivity and environmental affairs in the earthmoving operations.
Keywords: Loader-truck operation, Surface mining, Fleet size, Emissions Cost -
Pages 967-976
In the mining sector, the barrier to obtain an efficient safety management system is the unavailability of future information regarding the accidents. This paper aims to use the auto-regressive integrated moving average (ARIMA) model, for the first time, to evaluate the underlying causes that affect the safety management system corresponding to the number of accidents and fatalities in the surface and underground mining in Pakistan. The original application of the ARIMA model provides that how the number of accidents and fatalities is influenced by the implementation of various approaches to promote an effective safety management system. The ARIMA model requires the data series of the predicted elements with a random pattern over time and produce an equation. After the model identification, it may forecast the future pattern of the events based on its existing and future values. In this research work, the accident data for the period of 2006-2019-is collected from Inspectorate of Mines and Minerals (Pakistan), Mine Workers Federation, and newspapers in order to evaluate the long-term forecast. The results obtained reveal that ARIMA (2, 1, 0) is a suitable model for both the mining accidents and the workers’ fatalities. The number of accidents and fatalities are forecasted from 2020 to 2025. The results obtained suggest that the policy-makers should take a systematic consideration by evaluating the possible risks associated with an increased number of accidents and fatalities, and develop a safe and effective working platform.
Keywords: Auto-regressive integrating, moving average method, Fatalities, Safety management system, Forecasting, Mine safety -
Pages 977-989
The contamination of ores with wastes or materials of lower than the cut-off grade is referred to as dilution. Dilution is an undesirable phenomenon that, on one hand, reduces the product grade and, consequently, reduces the sales prices and, on the other hand, adds an extra cost to waste production. Therefore, studying and evaluating the dilution risk is important in mining, and especially in underground mining. In this work, using a powerful decision-making method, i.e. Multi-Attributive Approximation Area Comparison (MABAC), the dilution risk and ranking it in underground mines are assessed. For this purpose, the most important parameters affecting the dilution in 10 mines of the Venarch manganese mines are first identified and then weighed using the Fuzzy Delphi Analytical Hierarchy Analysis (FDAHP) method. Then using the MABAC method, the dilution risk score for each mine is estimated, and subsequently, various mines are ranked as the dilution risk. Then with the implementation of the Cavity Monitoring System (CMS) and measurement of the actual dilution values, the mines are ranked in dilution. The correct matching of the results of these two rankings indicates that the MABAC method is highly effective in the ranking of the risk. At the end, the risk ranking of the mines is done using the TOPSIS method, and the lack of full compliance with the results of this method with the actual values indicates that the MABAC method is preferable to the TOPSIS method.
Keywords: Dilution risk, Ranking, MABAC approach, Underground metal mine -
Pages 991-1005
Calculation of the specific charge and specific drilling before a blasting operation plays a significant role in the design of a blasting pattern and the reduction of the final extraction cost of minerals. In this work, the information from the Sungun, Miduk and Chah-Firouzeh copper mines in Iran was assessed, and it was found that there was a significant relationship between the specific charge and specific drilling and the hole diameter, bench height, uniaxial compressive strength and joint set orientation. After finding a technical and economic model to calculate the specific charge and specific drilling, this model was tested on the Sungun copper mine. Due to the insufficient consideration during the design of a blast pattern and because of the high hardness of the rocks in some parts of the mine, lots of destructive events such as boulders, back break, bench toe, high specific charge and high specific drilling, fly rock, and ground vibration in the blast operations were observed. The specific charge and specific drilling were found to be the most important technical and economic parameters involved in designing a blasting pattern, and they were found to play an important role in reducing the blasting cost. The blasting cost could be largely controlled by the accurate examination and computation of these parameters. An increase in the rock strength and the angle between the bench face and the main joint set would increase the specific charge and specific drilling. On the other hand, a specific charge and a specific drilling would decrease when the hole diameter increased in every range of the uniaxial compressive strength.
Keywords: Specific Charge, specific Drilling, Hole diameter, Height bench, Uniaxial Compressive Strength, Joint set orientation -
Pages 1007-1022
In this work, the effect of rock bolt angle on the shear behavior of Rock Bridges is investigated using the particle flow code in two dimensions (PFC2D) for three different Rock Bridge lengths. Firstly, the calibration of PF2D is performed to reproduce the gypsum sample. Then the numerical models with the dimensions of 100 mm * 100 mm are prepared. The Rock Bridge is created in the middle of the model by removal of the narrow bands of discs from it. The uniaxial compressive strength of the Rock Bridge is 7.4 MPa. The Rock Bridge lengths are 30 mm, 50 mm, and 70 mm. The rock bolt is calibrated by a parallel bond. The tensile strength of the simulated rock bolt is 360 MPa.One rock bolt is implemented in the Rock Bridge. The rock bolt angles related to the horizontal axis are the changes from 0 to 75 degrees. Totally, 18 models are prepared. The shear test condition is added to the models. The normal stress is fixed at 2 MPa, and the shear load is added to the model till failure occurs. The results obtained show that in a fixed rock bolt angle, the tensile crack initiates from the joint tip and propagates parallel to the shear loading axis till coalescence to rock bolt. In a constant Rock Bridge length, the shear strength decreases with increase in the rock bolt angle. The highest shear strength occurs when the rock bolt angle is 0°.
Keywords: rock bridge, rock bolt, PFC2D -
Pages 1023-1037
The Dehaj area, located in the southern part of the Urumieh-Dokhtar magmatic belt, is a well-endowed terrain hosting a number of world-class porphyry copper deposits. These deposits are all hosted in an acidic to intermediate volcano-plutonic sequence greatly affected by various types of the hydrothermal alterations, whether argillic, phyllic or propylitic. Although there are a handful of hitherto-discovered porphyry copper deposits in the area, the geological setting of the area suggests the possibility of finding further deposits. The recognition and delineation of the hydrothermal alterations can pave the way for the discovery of further potential zones that possibly host the porphyry copper deposits. The current work proposes a hybrid methodology applied to the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery by combining the application of dimension reduction and fractal techniques to delineate the hydrothermally-altered zones In order to reduce the dimensionality of multi-band ASTER data, Robust Principal Component Analysis (RPCA) was employed to elicit the traces of hydrothermally-related mineral assemblages including illite, sericite, quartz, kaolinite, epidote, and chlorite. Highlighting the existence of the aforementioned minerals, the extracted components require interpretation, i.e. a boundary is required to constraint the hydrothermally affected zones from the rest of the geological units. In order to tackle such a challenge, the authors introduce the concept of value-pixel fractal technique for the extracted principal components. The Prediction-Area (P-A) plot is used for the validation, which shows that the identified alterations correlate with the mineralization. The results obtained are verified by a geological survey, where a number of samples are collected from the delineated zones. The samples are analyzed by the XRD techniques, finding that this work is successful in classifying the hydrothermally-altered zones.
Keywords: Robust Principal Component Analysis (RPCA), Value–Pixel fractal model, Hydrothermal alteration, Porphyry copper -
Pages 1039-1046
The gypsum mineralization occurred in the form of Satin Spar and Selenite in the south and southwest of the Fars province in the folded Zagros zone. In this region, Satin Spar mineralization has been formed as stratiform between the red marl and siltstone units of Late Miocene–Pliocene in Agha Jari, Bakhtiari, and the Gachsaran formations. The reserves of Satin Spar in this area are at least 200,000 tons. Satin Spar due to its chatoyancy, has been able to distinguish itself from gypsum. This beautiful light phenomenon (chatoyancy) results from the regular and parallel arrangement of the Satin Spar fibers. The mineral was first identified by its physical properties, and then by the X-ray diffraction analysis. They were also examined by scanning electron microscopy for its structure and also the structure of fiber crystals and their optical properties. In order to examine the polishing condition of Satin Spar, several samples of this gemstone were also selected for fantasy and Cabochon cut. For the first time in Iran, the exploration of Satin Spar gemstone in the Fars region can be a model for its discovery in the other evaporative formations in the country.
Keywords: Satin Spar, Chatoyancy, Gemstone, Zagros Zone, Iran -
Pages 1047-1058
The cavability assessment of rock mass cavability and indicating the damage profile ahead of a cave-back is of great importance in the evaluation of a caving mine operation, which can influence all aspects of the mine operation. Due to the lack of access to the caved zones, our current knowledge about the damage profile in caved zones is very limited. Among the different approaches available, physical modelling can provide a useful tool for assessment of the cave propagation and understanding the cave-back mechanism. Despite the general belief of the continuous damage profile ahead of a cave, the recent studies have shown a different mechanism of banding fracture. In order to investigate the caving mechanism ahead of a cave, a base friction apparatus is designed in this work. The base friction powder is used as the modelling material for physical testing, where its strength properties is significantly dependent on its unit weight. The effects of the material’s unit weight and the undercutting process on the cavability and cave-back height are studied. The experimental results undertaken in this research work clearly confirm the banding fracture mechanism in the caved zone, rather than continuous yielding. The effect of the undercutting sequence on the cave-back height is investigated through three different scenarios of symmetric undercutting with a gradual increase in span, symmetric undercutting with a sudden increase in span, and asymmetric undercutting. The results obtained show that the ground deformation is significantly dependent on the undercutting sequence, where choosing a greater undercutting span results in a faster cave propagation and smaller accessible undercut spans.
Keywords: Physical modelling, Cave mining, Cavability assessment, Banding fracture, Damage profile -
Pages 1059-1078
In this work, we aim to identify the mineralization areas for the next exploration phases. Thus, the probabilistic clustering algorithms due to the use of appropriate measures, the possibility of working with datasets with missing values, and the lack of trapping in local optimal are used to determine the multi-element geochemical anomalies. Four probabilistic clustering algorithms, namely PHC, PCMC, PEMC, PDBSCAN, and 4138 stream sediment samplings, are used to divide the samples into the three clusters of background, possible anomaly, and probable anomaly populations. In order to determine these anomalies, ten and eight metal elements are selected as the chalcophile and siderophile elements, respectively. The results obtained show the areas of approximately 500 and 5,000 km2</sup> as the areas of the probable and possible anomalies, respectively. The composite geochemical anomalies of the chalcophile and siderophile elements are mostly dominant in the metamorphic-acidic-intermediate rock units and the alkaline-metamorphic-intermediate rock units of the studied area, respectively. Besides, the obtained anomalies of the four clustering algorithms also cover about 65% of the mineralized areas, all mines, and almost 60% of the alteration areas. The validity criterion of the clustering methods show more than 70% validity for the obtained anomalies. The results obtained indicate that the probabilistic clustering algorithms can be an appropriate statistical tool in the regional-scale geochemical explorations.
Keywords: Probabilistic clustering algorithms, Composite geochemical anomaly, Geochemical potential mapping, Hydrothermal alterations, Deh-Salm quadrangle -
Pages 1079-1093
In this work, three types of natural clays including kaolinite, montmorillonite, and illite with different molecular structures, as adsorbents, are selected for the removal of methylene blue dye, and their performance is investigated. Also the optimization and the analysis of the dye adsorption mechanism are performed using the response surface methodology, molecular modeling, and experimental studies. The response surface optimization results demonstrate that the parameters affecting on the dye adsorption process are somewhat similar in all the three types of clays, and any difference in the impacts of the different parameters involved depends on the different structures of these three types of clays. The results of the experimental studies show that all the three clays follow the Temkin isotherm, and the comparison of the clay adsorption capacity is illite (3.28) > kaolinite (4.15) > montmorillonite (4.5) L/g. On the other hand, the results obtained from the laboratory studies and the response surface optimization were obtained using molecular modeling with the Gaussian and Chem-Office softwares. The results of these achievements confirm that the number of acceptor hydrogen bonds around the clays influence the adsorption capacity of methylene blue. Based on the results obtained, most adsorption capacities of clays are related to illite > kaolinite > montmorillonite that have 24, 18, and 16 acceptor hydrogens, respectively. The assessment of the adsorption mechanism process by the different methods confirms the dominance of the physical adsorption process and a minor effect of the chemical adsorption.
Keywords: Adsorption, Methylene Blue, Response Surface, Molecular Modeling -
Pages 1095-1113
There is a direct relationship between the efficiency of mechanized excavation in hard rocks and that of disc cutters. Disc cutter wear is an important effective factor involved in the functionality of tunnel boring machines. Replacement of disc cutters is a time-consuming and costly activity that can significantly reduce the TBM utilization and advance rate, and has a major effect on the total time and cost of the tunneling projects. When these machines bore through hard rocks, the cutter wear considerably affects the excavation process. To evaluate the performance of the cutters, first, it is essential to figure out how they operate the rock cutting mechanism; secondly, it is important to identify the key factors that cause the wear. In this work, we attempt to introduce a comprehensive numerical method for estimation of disc cutter wear. The field data including the actual cutter wear more than 1000 pieces and the geological parameters along the Kani-Sib transmission tunnel in the northwest of Iran are compiled in a special database that is subjected to a statistical analysis in order to reveal the genuine wear rule. The results obtained from the numerical method indicate that with an increase in the wear of disk cutter up to 25 mm</em>, the applied normal and rolling forces can be multiplied by 2.9 and 2.7, respectively, and by passing the critical wear, the disk cutters lose their optimal performance. This method also shows that confining pressure will increase the wear of the disc cutter. By the proposed formulation, the cutter consumption rate can be predicted with a high accuracy.
Keywords: Tunneling Boring Machine, Disc cutter wear, Prediction model, Cutting force, Numerical modeling -
Pages 1115-1126
Business logic is one of the most important logics based on the decision matrix. However, using this logic alone and environmental uncertainty leads to problems such as low accuracy and integrity in strategic planning. In this work, we use an intelligent model based on the neural-fuzzy approach aiming at a desired decision-making and reducing the uncertainty in the strategic planning in mineral holdings. Here, the strategies are presented based on three logics, namely business, added value, and capital market. After extracting the primary indices, the final indices of the three logics are selected by consulting with the mineral holding experts. Modelling of the indices is accomplished by the Matlab software, and the model computation is done by the root mean square error for the test data and train data. The case study (Shahab-sang holding) findings show that by a combination of these three logics, the proposed strategies include more integration and accuracy, which lead to a lower uncertainty and more speed in the strategy formulation. Also the test result indicates the validity of all the extracted strategies.
Keywords: Intelligent model, strategic planning, mineral holding, decision matrix, fuzzy-neural -
Pages 1127-1140
This work presents a quantitative predicting likely acid mine drainage (AMD) generation process throughout tailing particles resulting from the Sarcheshmeh copper mine in the south of Iran. Indeed, four predictive relationships for the remaining pyrite fraction, remaining chalcopyrite fraction, sulfate concentration, and pH have been suggested by applying the gene expression programming (GEP) algorithms. For this, after gathering an appropriate database, some of the most significant parameters such as the tailing particle depths, initial remaining pyrite and chalcopyrite fractions, and concentrations of bicarbonate, nitrite, nitrate, and chloride are considered as the input data. Then 30% of the data is chosen as the training data randomly, while the validation data is included in 70% of the dataset. Subsequently, the relationships are proposed using GEP. The high values of correlation coefficients (0.92, 0.91, 0.86, and 0.89) as well as the low values of RMS errors (0.140, 0.014, 150.301, and 0.543) for the remaining pyrite fraction, remaining chalcopyrite fraction, sulfate concentration, and pH prove that these relationships can be successfully validated. The results obtained also reveal that GEP can be applied as a new-fangled method in order to predict the AMD generation process.
Keywords: Acid mine drainage, copper tailing, pyrite, chalcopyrite, gene expression programming -
Pages 1141-1155
Drilling and blasting have numerous applications in the civil and mining engineering. Due to the two major components of rock masses, namely the intact rock matrix and the discontinuities, their behavior is a complicated process to be analyzed. The purpose of this work is to investigate the effects of the geomechanical and geometrical parameters of rock and discontinuities on the rock mass blasting using the UDEC software. To this end, a 2D distinct element code (DEM) code is used to simulate the stress distribution around three blast holes in some points and propagation of the radial cracks caused by blasting. The critical parameters analyzed for this aim include the normal stiffness (JKN) and shear stiffness (JKS), spacing, angle and persistence of joint, shear and bulk modulus, density of rock, and borehole spacing. The results obtained show that the joint parameters and rock modulus have very significant effects, while the rock density has less a effect on the rock mass blasting. Also the stress level has a direct relationship with JKN, JKS, bulk modulus, and the shear modulus has an inverse relationship with the rock density. Moreover, the stress variation in terms of spacing and joint angle indicates sinusoidal and repetitive changes with the place of target point with respect to the blast hole and joint set. Also with a decrease in the JKN and JKS values, the radial cracked and plastic zones around a blast hole show more development. With increase in the joint persistence, the plastic zones decrease around a blast hole.
Keywords: Blasting, Distinct element method, Numerical modelling, discontinuity, Rock mass -
Pages 1157-1171
Indigenous acidophilic bacteria separated from mine-waste can be used in return for the addition of the reagents like sulfuric acid. Among the tailings bacteria, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans are of the most-studied ones for the bioleaching and bioremediation of elements. In this work, the isolation and characterization of the mentioned bacteria are studied by a proposed biochemical protocol. The sequential cultivation of the soil bacteria in a series of liquid media and solid culture medium cause the separation of bacteria. A biochemical method is used to characterize the isolated strains of the native bacteria. The changes in the Eh, pH, and culture medium color are checked in order to control the bacterial growth in a 9K liquid medium. At the first step of the sequential cultivation, the amount of nutrient broth is the main factor that affects the complete isolation of Acidithiobacillus bacteria. The trivial dosage of nutrient broth does not lead to the desired proliferation of the bacteria in the tailings soil. 8 g L-1of the nutrient broth is suitable to increase the initial number of bacteria in the soil significantly. In the next steps, the bacteria are separated from the soil, and pure strains of A. ferrooxidans and A. thiooxidans are isolated using a 9K medium. Final pure strains are achieved during the two steps of streak cultivation of bacteria in the soil medium of nutrient agar.
Keywords: Native bacteria, mine-waste, Isolation, A. ferrooxidans, A. thiooxidans -
Pages 1173-1190
In this paper, we aim to achieve two specific objectives. The first one is to examine the applicability of wavelet neural network (WNN) technique in ore grade estimation, which is based on integration between wavelet theory and Artificial Neural Network (ANN). Different wavelets are applied as activation functions to estimate Cu grade of borehole data in the hypogene zone of porphyry ore deposit, Shahr-e-Babak district, SE Iran. WNN parameters such as dilation and translation are fixed and only the weights of the network are optimized during its learning process. The efficacy of this type of network in function learning and estimation is compared with Ordinary Kriging (OK). Secondly, we aim to delineate the potassic and phyllic alteration regions in the hypogene zone of Cu porphyry deposit based on the estimation obtained of WNN and OK methods, and utilize Concentration–Volume (C–V) fractal model. In this regard, at first C–V log–log plots are generated based on the results of OK and WNN. The plots then are used to determine the Cu threshold values of the alteration zones. To investigate the correlation between geological model and C-V fractal results, the log ratio matrix is applied. The results showed that, Cu values less than 1.1% from WNN have more overlapped voxels with phyllic alteration zone by overall accuracy (OA) of 0.74. Spatial correlation between the potassic alteration zones resulted from 3D geological modeling and high concentration zones in C-V fractal model showed that the alteration zone has Cu values between 1.1% and 2.2% with OA of 0.72 and finally have an appropriate overlap with Cu values greater than 2.2% with OA of 0.7. Generally, the results showed that the WNN (Morlet activation function) with OA greater than OK can be can be a suitable and robust tool for quantitative modeling of alteration zones, instead of qualitative methods.
Keywords: Alteration, Ordinary Kriging, C-V fractal model, Wavelet Neural Network, Shahr-e-Babak -
Pages 1191-1203
Sustainability assessment has received numerous attentions in the mining industry. Mining sustainability includes the environmental, economic, and social dimensions, and a sustainable development is achieved when all these dimensions improve in a balanced manner. Therefore, to measure the sustainability score of a mine, we require an approach that evaluates all these three dimensions of mining sustainability. Some frameworks have been developed to compute the sustainability score of mining activities; however, some of them are very complicated and the others do not cover all the environmental, economic, and social aspects of sustainability. In order to fill this gap, this work was designed to introduce a practical approach to determine the score of mining sustainability. In order to develop this approach, initially, 14 negative and positive influential macro factors in the sustainability of open-pit mines were identified. Then the important levels of the factors were estimated based on the comments and scores of some experts. Two checklists were constructed for the negative and positive factors. The sustainability score was computed using these checklists and the importance levels of the factors. The score range was between -100 and +100. In order to implement the proposed approach, the Angouran lead and zinc mine was selected. The sustainability score of the Angouran mine was +47.91, which indicated that the this mine had a sustainable condition. This score could increase through modification of some factors.
Keywords: Sustainability Score, Open Pit Mine, Sustainable Development, Macro Factors -
Pages 1205-1216
The discrete element method (DEM) has been used as a popular simulation method in order to verify the designs by visualizing how materials flow through complex equipment geometries. Although DEM simulation is a powerful design tool, finding a DEM model that includes all real material properties is not computationally feasible. In order to obtain more realistic results, particle energy loss due to rolling friction has been highlighted by many researchers using various models to implement a reverse torque. On account of the complexity of the problem, there is no unique model for all applications (i.e. dynamic and pseudo-static regimes). In this research work, an in-house developed DEM software (KMPCDEM©) was used to assess the robustness of three models by comparing the repose angle obtained through the draw down test. The elastic–plastic spring dashpot model was then modified based on considering the individual parameters instead of the relative parameters of two contact entities. The results showed that the modified model could produce a higher repose angle. The modified model was used for the calibration of DEM input parameters in the simulation of repose angle of iron ore pellets in a laboratory setup of the draw down test. Comparison of the calibrated DEM simulation (using 0.0007 and 0.75 for the rolling and sliding friction coefficients, respectively) with the laboratory results showed a good agreement between the predicted and measured angle of repose. The non-calibrated DEM simulations are susceptible to error, and therefore, it is strongly recommended to use the laboratory experiments to characterize the materials before using the DEM simulation as a design tool of industrial equipment.
Keywords: DEM, Contact parameters, Repose angle, Calibration, Iron ore pellets -
Pages 1217-1229
One of the most conventional toppling instabilities is the block-flexural toppling failure that occurs in civil and mining engineering projects. In this kind of failure, some rock columns are broken due to tensile bending stresses, and the others are overturned due to their weights, and finally, all of the blocks topple together. A specific feature of spheroidal weathering is the rounding of the rock column edges. In the mode of flexural toppling failure, rounding of edges happens only at the upper corners of the block but in the block toppling failure mode, due to the presence of cross-joints at the base of the block, rounding of edges also occurs at the base of the block. In this work, a theoretical model is offered to block-flexural toppling failure regarding the erosion phenomenon. The suggested methodology is evaluated through a typical example and a case study. The results of this research work illustrate that in the stable slopes with rectangular prismatic blocks, where the safety factor value is close to one, the slope is subjected to failure due to erosion. Also the results obtained show that the recommended approach is conservative in analyzing the block-flexural toppling failure, and this approach can be applied to evaluate this failure.
Keywords: Rock Slope Stability, Spheroidal Weathering, Round Edges, Theoretical Solution