فهرست مطالب

Pollution - Volume:7 Issue: 3, Summer 2021

Pollution
Volume:7 Issue: 3, Summer 2021

  • تاریخ انتشار: 1400/05/17
  • تعداد عناوین: 18
|
  • Jayanta Goswami, Rajib Kumar Bhattacharjya * Pages 495-509

    This work aims to assess the Water Quality Index (WQI) of the groundwater-based public drinking water supply system of Kamrup District (Rural) of Assam, India. For assessing WQI, water samples have been collected, both raw water and treated water, from seventy-eight public drinking water supply projects over the district for comprehensive physicochemical analysis. The WQI was calculated based on the weightage derived from the literature survey and based on the doctors’ weightage. The derived WQI showed that the water quality falls from poor to very poor quality. However, the concentration of the water quality parameters except Iron, Fluoride, and Manganese are within the permissible limit in all the water supply projects. It shows that the WQI calculated based on the weightage derived, as stated above, is not displaying the actual water quality of the supplied water. As such, a modified method is proposed to calculate the WQI of the supplied water considering the permissible limit of the parameters in deriving the weightage for the parameters. The WQI values calculated using the modified method falls in the range of good water quality to poor water quality and shows the true water quality of the supplied water. The statistical analysis of the water quality parameters and WQI shows that the WQI has a very high correlation with Manganese with a coefficient of correlation value of 0.86, followed by 0.4 with Chloride and 0.34 with Fluoride.

    Keywords: Water quality, Groundwater, drinking water, Kamrup
  • Khadidja Bouzid *, Abdelhak Boutaleb, Mohamed Toumi Pages 511-526

    In order to assess the environmental impact of soil polluted with trace metals, representative soils were collected surrounding the abandoned Pb–Zn mine mill (SM soils), and the new temporary ore storage site (SS soils), which are located in the vicinity of Medina (Aures), North-east of Algeria. Total digestion has been used to determine the total content of Zinc, Copper, Lead, Cadmium, and Arsenic, then it was analysed by inductively coupled plasma atomic emission spectrometry (ICP-AES). The sequential extraction Tessier scheme was also used to extract the chemical forms of Zn, Cu, and Pb, and their concentrations in each fraction were analyzed by atomic absorption spectrometry. Lead was the most abundant trace metals, its concentration in mg.kg-1 ranged between (67.20 – 46000), followed by Zinc (26 - 1853), Copper (32 – 495), Arsenic (8 – 116), and Cadmium (0.3 - 7.30). Sequential extraction shows that Zinc was mainly associated with reducible and residual fractions. Copper was bound predominantly with the minerals in the residual fraction, followed by the organic matter. Lead was bound mainly with carbonate fraction in SM soils, while Pb in the SM soils was mainly associated with the reducible fraction. The Pb, Zn, Cu mobility factor was significantly higher in SM soils than in SS soils. These results indicate that anthropic activities related to ore concentration and mining process lead to increased concentration of trace metals in surrounding soils, hence their mobility and bioavailability, this consists a potential risk to the environment and biota.

    Keywords: Mobility, Bioavailability, trace metal, soil pollution, Ichmoul
  • Azim Ashayeri *, Nasser Mehrdadi, Gholamreza Nabi Bidhendi Pages 527-542

    Bed Sediment is a dynamic and complex material that plays an important role in the aquatic ecosystems and provides habitat from a highly various community of organisms. To address the major issue, this study, which its substantive subject done for the first time in Iran, aimed to assess the current status of Darreh-rood river's health and quality using SOD rate and its associated factors including Texture, fine-PSD, TOC and TP of bed sediments along with some basic field parameters of river-water. All required samples were collected from 10 sampling points in due course. SOD data with regard to related factors were calculated and analyzed. The rates of SOD ranged from 0.69 to 1.57 g O2/m2/day. Moreover, this index was classified in varied quality domains. Afterwards, a predictive equation was determined among SOD rate and its associated parameters using MATLAB software. Finally, the Results showed that the river quality and health suitability in research area are in categories slightly clean and slightly degraded, in targeted zones during the study period. Also, the increase in TOC and TP concentrations together with a decrease in sediment particle size was led to an increase in SOD-rate accordingly. In conclusion, the consequences of this study under Survivability-based Adaptive Management (SAM) perspective can be used as a rapid diagnostic tool to support water policy decision-makers and other stakeholders to promote the best practices for protecting the health conditions of riverine systems, focusing on selecting the appropriate points for discharging the wastewaters into the receiving water-bodies.

    Keywords: SOD rate, SAM approach, aquatic ecosystem, River Health, Moghan Region
  • Ajay Kumar Sahu, Prakash Ghose * Pages 543-560
    I is missing this work, a computational simulation has been performed to investigate the positional effect of reburn fuel injection on NO-reburn. Reburn fuel methane is injected across the coal injection plane at different axial positions of the combustor. Various major NO source mechanisms are considered for NO formation and NO reburn mechanism is used for NO depletion. Temperature profile, species concentration are also investigated, as both NO formation and depletion rate depends on these parameters. It has been observed that, a high temperature flame exists near coal inlet, when the reburn fuel injection plane is closer to coal inlet. On the other hand, the temperature of the flame near the coal inlet decreases when the reburn fuel injection position is far away from coal inlet region.  Moreover, NO sources are observed near coal inlet region, when the reburn fuel is injected closer to coal inlet. On the other hand, only Fuel-NO is observed near coal inlet, when the reburn fuel is injected away from the coal inlet. Maximum NO reduction efficiency is observed at outlet plane when reburn fuel is injected closer to inlet, whereas a relatively lower NO reduction efficiency has been observed at outlet plane when reburn fuel is injected far away from coal inlet region.
    Keywords: Oxides of Nitrogen, injection position, coal combustion, computational model
  • El Hassan Abba *, Imam Idrissi, Younes Bennani, Adnane El Yaacoubi, Sanae Cherroud, Tarik Ainane, Mhamed Khaffou Pages 561-571
    Water resource management requires simple tools to enable managers to make decisions. This is the case for water quality indices that provide access to clear, synthetic and well-targeted information. In this study, we have chosen two indices based on two different approaches, the Microbiological Quality Index (MQI), which is determined from bacteriological analyses of water, and the Water Quality Index (WQI), which is based on physicochemical parameters. The Water Quality Index (WQI) shows a longitudinal upstream-downstream variation and ranges from is between five (5) (Null Faecal Contamination) at sampling point P1 and 3.4 (Moderate Fecal Contamination) at P2. The Water Quality Index (WQI) ranges from a low of 14.08 (excellent water quality) at the P1 level to a high of 93.05 at the P2 level (poor water quality) receiving wastewater discharges. The WQI results for P3 and P4, show that the water is of good quality (downstream of P2), which shows the degree of self-purification of the Oum Er Rabia River, regardless of the sampling period. Finally, the results of the MQI corroborate those obtained with the WQI for the water quality of the different sampling points.
    Keywords: Water resource, management, Quality, Oum Er Rabia River
  • Murat Topal *, Emine Işıl Arslan Topal Pages 573-584
    In this study, the estimated amounts of discarded face masks due to COVID 19 were investigated. In this context, the amount of waste face masks was determined separately according to the mask types used (nonwoven, meltblown, and 3-ply, pleated) and the importance of waste face masks was revealed. According to obtained data, the estimated total daily face mask use in Turkey is 72,351,638. The highest amounts of nonwoven, meltblown, and 3-ply face mask waste were determined as 26.88, 36.29, and 43.68 tonnes/day for İstanbul city, respectively. Total amounts of nonwoven, meltblown and 3-ply face mask waste in Turkey were calculated as 144.7, 195.35, and 235.14 tonnes/day, respectively. The top 5 provinces with the highest amount of waste masks are listed as follows; İstanbul (nonwoven=26.88, meltblown=36.29, 3ply=43.68 tonnes/day), Ankara (nonwoven=9.91, meltblown=13.38, 3ply=16.11 tonnes/day), İzmir (nonwoven=7.76, meltblown=10.47, 3ply=12.61 tonnes/day), Bursa (nonwoven=5.40, meltblown=7.29, 3ply=8.78 tonnes/day), and Antalya (nonwoven=4.45, meltblown=6.01, 3ply=7.23 tonnes/day), respectively. In Turkey, 91.3% of medical waste collected in health institutions in 2019 (90,920 tonnes) was sterilized and disposed of in storage areas (83,010 tonnes). 8.7% of medical waste was sent to incineration facilities and disposed (7,910 tonnes). Considering these values, 132, 178.35, and 214.7 tonnes/day of nonwoven, meltblown, and 3-ply face mask wastes can be disposed by sterilization and the remaining 12.7, 17, and 20.44 tonnes/day by incineration, respectively.
    Keywords: Health, Pandemic, Pollution, SARS-CoV-2, waste
  • Parisa Pakrooh *, Runar Brännlund Pages 585-606
    To support the fulfillment of Sweden’s targets in term of climate change and economic growth, we need to do a distinct study to show the Environmental Kuznets Curve (EKC) pattern in different sector of the economy, as the GDP allocation, energy intensities, GHG emission, and technological development are different between sectors. This kind of study helps to figure out how the different sectors contribute to climate change and could appoint more particular and effective environment-energy policies. For this aim, we analyzed the existence of the EKC by implementing the ARDL Bound test approach in the whole and individual sectors of Sweden’s economy throughout 1990-2019. Our results indicated the contribution of a particular sector on total GHG emissions per capita. Results of the whole economy confirmed the EEKC hypothesis with a turning point in 1996, in which the AFF sector, unlike industry and service, had increased GHG emissions. Disaggregated sectoral analysis showed various results. The industry sector had efficient energy improvement. Policymakers should pay attention to AFF’s GHG emissions, as different sources of energy consumption had not impressive impact in both the short and long term. Also, effective fossil-related policies are necessary for the service sector due to the main contribution to transportation.
    Keywords: Energy, environment, Greenhouse Gas, Sector, Sweden
  • Vijai Krishna *, Anil Kumar Pandey, Pankaj Kumar Gupta Pages 607-616

    In Mirzapur (U.P.), a power-starved district, the UASB (Upflow Anaerobic Sludge Blanket) technique was adopted. Almost all of the available technologies do not treat heavy metals, so, is the case with the UASB also. The present study is to assess how much heavy metal can get accumulated in plant tissues in different species. The result of the present study was that the concentration of Pb(1106.31)>Zn(221.45)>Cd(49.26)>Hg(23.37) mg/Kg in the sludge while the concentration of Zn(93.35)>Pb(52.00)>Hg(16.93)>Cd(1.53) mg/Kg in the soil. When the sludge was mixed with the soil the trend got changed and the trend was Pb(596.36)>Zn(219.86)>Cd(24.70)>Hg(22.63) mg/Kg. Three different species that were chosen for the study were Basella Alba (Spinach), Solanum Lycopersicum (Tomato) & Brassica Juncea (Mustard). The trend of accumulation of studied heavy metals in the Brassica Juncea (Mustard) was Zn(85.33)>Pb(25.88)>Hg(11.23)>Cd(0.99) mg/Kg. In Solanum lycopersicum (Tomato) the trend was Pb(231.11)>Zn(108.72)>Hg(12.43)>Cd(9.41) mg/Kg  and in Basella alba (Spinach) was Zn(103.81)>Pb(83.90)>Hg(10.78)>Cd(4.18) mg/Kg. Overall the study reveals that the accumulation of heavy metals takes place in plants grown in soil mixed with sewage sludge. The reduction in the concentration of Pb, Cd, Hg and Zn in sludge mixed with soil after the harvesting of plant in case of Solanum lycopersicum were 39.38%, 47.93%, 6.18% and 49.89% respectively; while in case of Basella alba these were 25.23%, 57.53%, 71.58% and 49.16% respectively; and in case of Brassica Juncea these reduction were 25.86%, 60.80%, 70.96% and 49.04% respectively.

    Keywords: Pollution, Water treatment, Sludge, Fertilizers, Agriculture
  • Amina Tahreen, Mohammed Saedi Jami *, Fathilah Ali, Nik Mohd Farid Mat Yasin, Mohammed Ngabura Pages 617-632
    The critical parameters namely initial pH, time and current density largely impact the process efficiency of electrocoagulation (EC). Few works have been done on observing the interaction of these critical parameters and the possible combined effect on the overall pollutant removal efficiency. Therefore, the knowledge of the combined effect of critical parameter interaction would enhance the optimization of EC parameters to attain maximum efficiency with limited resources. Using aluminium electrodes with interelectrode distance of 10 mm on synthetic wastewater, representing biotreated palm oil mill effluent (BPOME), with a set range of initial pH, current density, and time of 3-8, 40-160 mA/cm2 and 15 to 60 minutes, respectively, the effect of the three critical variables was investigated. The optimum Chemical Oxygen Demand (COD) removal of 71.5% was determined at pH 6, current density of 160 mA/cm2 (with current 1.75 A) at EC time of 15 minutes. The experiment was validated with real BPOME, resulting in the removal efficiency of 60.7 % COD, 99.91 % turbidity, 100 % total suspended solids (TSS) and 95.7 % colour. Removal of a large quantity of pollutants in a time span of 15 minutes with optimized parameters in EC is notable for a wastewater treatment alternative that requires no extensive use of chemicals. The interaction of parameters observed in this study indicated a synergistic contribution of initial pH and current density in removing maximum wastewater COD in 15 minutes of EC.
    Keywords: Wastewater treatment, Industrial effluent, Optimization, Parameter interaction
  • Kudrat-E Khuda * Pages 633-642
    Technology has made the life of Bangladeshi people very flexible with new inventions. In most cases, here the people depend on these technological devices. These devices, along with various facilities, have also invited a series of problems mostly due to the lack of proper management. The Bangladeshi citizens often leave electronic devices that went bad or became unusable, in landfills, rivers, canals, and open spaces. As these devices possess a variety of toxic substances, dumping huge amounts of electronic waste can pollute the environment and threaten human health. Around 2.7 million metric tons of e-waste are generated each year in Bangladesh. Only 20-30% of this waste is recycled while the rest amount is released in landfills, rivers, canals, and open spaces posing a serious threat to the health and environment. Bangladesh has experienced rapid advancement in the technological sectors over the years. Therefore, it is a must to take steps necessary for avoiding the future jeopardized situation because of e-waste. The present e-waste management in Bangladesh experiences a number of drawbacks such as challenges in incentivization, unhygienic conditions of informal recycling, insufficient law and policy, less awareness, and lack of enthusiasm on part of the corporate to address the critical issues. In spite of the alarming levels of e-pollution in the country, the concerned authorities are yet to take any effective step or formulate any legislation to prevent the existing e-pollution. Moreover, the prevailing environmental laws are not adequate to address the issue and its application is still largely absent.
    Keywords: Approach, Bangladesh, Electronic waste, Policy, statutes
  • Abul Kalam Md. Lutfor Rahman *, Aparna Sarker, Nafees Ahmed, Marufa Mustofa, Abdul Awal Pages 643-656
    The removal of toxic textile dye, Congo red (CR) an azo based textile dye, was investigated from aqueous solution by low cost, eco-friendly available adsorbents such as petiole part (stem) of water lily (Nymphaea alba) under various experimental conditions.Batch experiment was carried out at varying pH, dye concentration, contact time and particle size as well as doses of the adsorbent. CR was analyzed by a UV-visible spectrophotometer. Optimum pH was found at pH 2 and 6. A relative study was done using sodium chlorite and formaldehyde treated water lily. The maximum removal of CR was obtained 94.68% using untreated water lily (UT-WL). Adsorption increased with the increase of the particle size of the adsorbent. The highest removal of CR was found at a lower dose (62.5 g/g) of the adsorbent. The Freundlich isotherm model was best fitted to equilibrium data obtained from the experiment. The adsorption kinetics successfully fitted to the pseudo-second-order kinetic model.
    Keywords: Congo red, Petiole part(stem), Adsorption isotherm, Adsorption Kinetics, Removal efficiency
  • Ramezan Taheri, Touraj Nasrabadi *, Hossein Yousefi Pages 657-667
    Recently, making use of emerging fuels such as municipal waste has been proposed as an alternative for conventional fuels and also as a way for municipal waste disposal. This research, while modeling the thermal and electrical profiles of Ilam Industrial Town, examines the possibility of supplying the required fuel from municipal waste by the year 2041. For this purpose, different combined heat and power (CHP) scenarios were implemented in the LEAP software. According to the results, electricity generation will start gradually from the year of operation of the power plants in 2025 and reach more than 4.3 GWh in 2026. The production process will be incremental and is expected to reach 115.9, 119.1, 111.8, 118.4, 123.1, 118.9, 118.4, 118.4 GWh, respectively under the scenarios of gasifier CHP, CHP turbine incinerator, CHP steam incinerator, landfill CHP, syngas CHP, anaerobic digester CHP, combined gasifier and incinerator CHP, and ultimately improve to 118.9 GWh under the scenario of optimized gasifier and incinerator CHP. The required power plant capacity under the above-mentioned scenarios is expected to be approximately 21 MW by the year 2041and modify to 20.5 MW under the optimization scenario. The incinerator, combined-incinerator-and-gasifier, and optimization scenarios meet the supply and demand conditions of the generated waste, and in other scenarios, either the CHP supply share should be lower than 50% or the additional waste should be supplied from the nearby villages and towns.
    Keywords: Energy, Supply, demand, waste
  • Zahra Sadat Mousavi Fard, Hassan Asilian Mahabadi *, Farahnaz Khajehnasiri Pages 669-680
    Today, indoor air pollution is a major concern. So far, many quantitative and qualitative studies have been conducted on particulate matter pollution in closed environments, but not much research has been done to measure air pollution in subway station. In this study, we have investigated the concentrations of PM10, PM2.5 and TSP particles in 12 underground stations on the oldest and main Tehran metro line, in two seasons, autumn and spring. For sampling suspended particles, we have used a portable direct reading device for monitoring suspended-particles (HAZDUST EPMA5000). We also used Pair T- test to compare the particle concentrations in different modes of the ventilation system (on, off, and inlet air) and Three-way variance analyze. According to the results, the mean concentrations of PM2.5-PM10 - TSP values in line-1 on the station platforms are significantly higher in spring than in autumn, off state of the ventilation system than on state of the ventilation system (P <0.001). Also, the concentration of particles measured in the air of subway stations is higher in the off state of ventilation systems, compared to Inlet air to stations (P<0.001). There is a correlation between concentration of particles measured in different sampling season, condition of the ventilation mode (on, off, inlet air) (P<0.001). Improving the efficiency of ventilation systems (equipped with a suitable filter) and fan in stations is suggested as one of the factors to reduce the concentration of particles, especially in spring.
    Keywords: Air pollution, underground stations, ventilation, monitoring
  • Jaber Safari, Hossein Abolghasemi, Mohammad Esmaili, Hossein Delavari Amrei *, Reza Pourjamshidian Pages 681-691
    In this study, the removal of nitrogen from effluent of ammonia plant by Chlorella vulgaris and Spirulina platensis was investigated. For this purpose, microalgae were cultivated in three diluting percentage of the wastewater (1, 3, and 5%) at 29±1 ◦C and light intensity at surface of culture were adjusted to 150 µmol photon / (m2. s). The results showed that Spirulina platensis is more capable than Chlorella vulgaris to grow in high levels of total nitrogen concentration. Also, maximum biomass production rate happened in 1% diluted samples for Chlorella vulgaris and 3% for Spirulina platensis. Furthermore, Chlorella vulgaris reduce total nitrogen concentration up to 55%. This value for Spirulina platensis was about 96%. However, for both species the removal of nitrogen in 1% diluted wastewater was maximum. According to the results of diluted wastewater of ammonia plant, it is a suitable culture medium for microalgae and it can be used to remove the nitrogen before entering the wastewater in nature.
    Keywords: Ammonia plant, Wastewater treatment, Diluting percentage, Nitrogen removal, microalgae
  • Goutam Kumar, Nusrat Tazeen Tonu *, Palash Kumar Dhar, Md. Mahiuddin Pages 693-707
    Safe and clean water is essential for all living beings. Consumption of polluted water which is contaminated with iron may cause serious health implications. Therefore, removal of Fe3+ from wastewater is prerequisite for further uses. The present study intended to prepare activated charcoal (AC) from Borassus flabellifer male flower (BF) for the removal of Fe3+ ions from wastewater in a cost effective way. BFAC was produced based on carbonization method. Surface morphology and elemental composition were investigated by Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy. Additionally surface charge was determined by iodine number and zero point charge calculation. Batch adsorption studies were monitored using UV-visible spectroscopy. The obtain results showed a maximum adsorption at pH 8 with 0.3g adsorbent dosage at 50ppm initial Fe3+ ion concentration for 130 min contact time. The analysis of adsorption isotherm was in good agreement with both Langmuir and Freundlich adsorption isotherms. The Fe3+ removal method was found to be controlled by 1st order kinetics mechanism. However, the production cost was much cheaper and the removal performance was comparatively better than other commercial charcoals. Hence, BFAC could be used as a commercial charcoal in rural area of Bangladesh for purification of waste water.
    Keywords: Borassus flabellifer male flower, activated charcoal, UV-visible spectroscopy, Adsorption isotherms
  • Mahsa Tashakor *, Soroush Modabberi Pages 709-722
    Previous studies have shown that certain urban elements and arsenic are significantly concentrated in the surface soils of Hamedan, the largest city in western Iran. This study was carried out to assess the non-cancer and cancer risks ‎from exposure to these potentially harmful elements (As, Cd, Cr, Cu, Ni, Pb, and Zn) for Hamedan residence. In so doing, thirty-one urban and three background soil samples were analyzed by ICP-MS and the Risk Assessment Model established by the USEPA was applied to assess the health risk. It was found that the hazard index values for all the concerned ‎elements are below 1, which indicates negligible to low non-carcinogenic risk for the exposed population. Nevertheless, some close to threshold values were recognized for As, Cr, and Pb implying that these elements have the potential to cause non-cancer risk for Hamedan citizens in case of long-term overexposure. The contribution of HQ-ingestion to total HI was the highest while the health effect associated with the inhalation exposure was trivial. Children were found to be more susceptible to potentially harmful elements than adults. ‎The cancer risk calculation revealed that both children and adults are at increasing risk of developing ‎cancer over a lifetime through ingestion, inhalation, and skin contact. All of the verified elements exceeded the ‎tolerable level (1×10-6) of cancer risk however arsenic and chromium were found to be the most carcinogenic ‎elements followed by Pb, Ni, and Cd. The carcinogenic risks were moderate for adults and high for ‎children. This study indicates the necessity of designing effective strategies to reduce elemental ‎pollution and to mitigate adverse human health effects of PHEs in Hamedan.‎
    Keywords: Anthropogenic pollutants, carcinogenic risk, Non-Carcinogenic Risk, toxic elements
  • Ram Chhavi Sharma *, Niharika Sharma Pages 723-737
    Ozone(O3), and its precursors, Benzene (C6H6), Nitrogen Dioxide(NO2), Carbon Monoxide (CO) and meteorological parameters Temperature, Relative Humidity and Wind Speed were measured in urban air of two sites of significant spatial variations, Delhi Milk Scheme (DMS), Sadipur and Netaji Subhash Chander Institute of Technology(NSIT) Dwarka, during 2017–2018. Samples collected by Central Pollution Control Board (CPCB) has been analysed. The concentrations of Benzene, Nitrogen dioxide and Carbon monoxide were found to be more at DMS than NSIT site in winter season (11.137±3.258, 5.540±1.441, 55.333±12.741, 44.667±10.066μg/m3, 1.433±0.058, 1.033±0.287mg/m3 respectively) and summer season (3.167±1.222, 2.233±0.929, 50.333±2.082, 31.333±6.658μg/m3, 0.743±0.151, 0.443±0.051mg/m3 respectively) while Ozone was found to be more at NSIT than DMS site (40.333±3.215, 34.433±2.503μg/m3 respectively). The maximum concentrations of Benzene for the DMS and NSIT sites, respectively, were 32.4μg/m3 and 17.7μg/m3 and was observed in the month of November while minimum were 1.0μg/m3 and 0.6μg/m3 and was observed in the month of June. For Ozone, the maximum concentrations for the DMS and NSIT sites, respectively, were 100μg/m3 and 101μg/m3 and was observed in the month of June while minimum were 33.0μg/m3 and 28.0μg/m3 and was observed in the month of February and December respectively. Regression analyses were performed to correlate O3 concentrations with C6H6, NO2 and CO in order to infer their possible sources. The study reveals that there is significant correlation of O3 with C6H6 (r2=0.475) and CO (r2=0.985) in summer at DMS and with C6H6 (r2=0.902) & NO2(r2=0.728) in winter at NSIT. The correlation of O3, C6H6, NO2 and CO with Temperature, Relative Humidity and Wind Speed has also been investigated to understand their influence on these pollutants.
    Keywords: Air pollution, tropospheric ozone, benzene, Regression, precursors
  • Hossein Etemadfard, Vahid Sadeghi *, Faleh Hassan Ali, Rouzbeh Shad Pages 739-747
    Air pollution is considered a global concern due to its impacts on human life and the urban environment. Therefore, precise modeling techniques are necessary to predict air quality in congested areas such as megacities. Recently, machine learning algorithms such as Neural Networks show significant possibilities in air quality studies. This paper proposes a model to estimate air quality in a congested urban area in Baghdad city using Artificial Neural Network (ANN) algorithm and Geospatial Information System (GIS) techniques. Carbon Monoxide (CO) gas is selected as the main air pollutant. The model parameters involve; CO samples, traffic flow, weather data, and land use information collected in the field. The proposed model is implemented in Matlab environment and the results are processed after entering ArcGIS software. Using its spatial analysis tools, the outputs are presented as a map. The final findings indicate the highest value of CO emissions that reached 34 ppm during the daytime. The most polluted areas are located near congested roads and industrial locations in comparison with residential areas. The proposed model is validated by using actual values that are collected from the field, where the model's accuracy is 79%. The proposed model showed feasibility and applicability in a congested urban area due to the integration between the machine learning algorithm and GIS modeling. Therefore, the proposed model in this research can be used as a supportive model for decision making of city managers.
    Keywords: Air pollution maps, CO emissions, ANN, GIS