فهرست مطالب

پژوهش های صنایع غذایی - سال سی و یکم شماره 3 (پاییز 1400)

فصلنامه پژوهش های صنایع غذایی
سال سی و یکم شماره 3 (پاییز 1400)

  • تاریخ انتشار: 1400/06/15
  • تعداد عناوین: 12
|
  • لیلا ناطقی*، هدی گرگان، شیلا برنجی صفحات 1-21

    دسر لبنی محصولی است که جزء اصلی آن شیر و فرآورده ‏های شیری است و بسیار مورد توجه کودکان و نوجوانان است. بنابراین غنی سازی آن می تواند برای سلامتی مصرف کنندگان مفید باشد. هدف از مطالعه حاضر بررسی امکان تولید دسر لبنی پروبیوتیک غنی‎شده با ویتامین A و D3 بود.

    روش کار

    ویتامین A (Iu/l 6000 و4000 ،2000) و ویتامین D3 (Iu/l 600 و 500 ،400) به صورت جداگانه و به صورت توام (Iu/l vit D 500 + Iu/l vit A 4000) به دسر لبنی که با باکتری بیفیدوباکتریوم بیفیدوم با تراکم cfu/ml 108 تلقیح شده بود، اضافه گردید. خواص فیزیکی-شیمیایی، میکروبی و ارزیابی حسی طی 28 روز نگهداری در دمای 4 درجه سانتی‎گراد مورد ارزیابی قرار گرفت. تجزیه و تحلیل داده ‎ها توسط آنالیز واریانس یک طرفه دانکن در سطح 95 % در نرم افزار مینی تب 16 انجام شد.

    نتایج

    نتایج نشان داد با افزایش زمان نگهداری میزان pH، سختی بافت، ویتامین D3، ویتامین A و زنده‎مانی باکتری پروبیوتیک کاهش و میزان اسیدیته و آب اندازی افزایش یافت. همچنین اثر نوع نمونه و زمان نگهداری بر طعم نمونه‎ ها معنی ‏دار بود.

    نتیجه گیری نهایی: 

    براساس نتایج ارزیابی حسی و زنده مانی، می توان دسر لبنی (حاوی Iu/l500 ویتامین D3، Iu/l 4000 ویتامین A و cfu/ml 108 بیفیدوباکتریوم بیفیدوم) با بالاترین میزان زنده مانی باکتری پروبیوتیک و پذیرش کلی مناسب تولید نمود که از نظر سلامت بخشی و خواص کیفی مناسب باشد.

    کلیدواژگان: دسر لبنی، ویتامین A، ویتامین D3، باکتری بیفیدوباکتریوم بیفیدوم
  • میلاد اسدی، ابراهیم احمدی* صفحات 23-37

    نان سنگک از انواع نان های مسطح است که به دلیل عطروطعم مناسب، در صدر مصرف نان های سنتی ایران قرار دارد. لذا این نان گزینه مناسبی برای غنی سازی با فیبرهای رژیمی می باشد. با توجه به اینکه یکی از مهم ترین دلایل ضایعات زیاد نان سنگک، عدم بسته بندی و نگهداری صحیح آن می باشد. لذا در این پژوهش تاثیر نوع فیلم بسته بندی و اتمسفر داخل بسته در طول دوره نگهداری بر ویژگی های نان سنگک غنی شده با پودر تفاله هویج مورد بررسی قرار گرفت. تعیین ویژگی های مکانیکی، کیفی و میکروبی نان سنگک غنی شده و شاهد تحت اتمسفر اصلاح شده (80 درصد دی اکسید کربن، 20 درصد نیتروژن) و اتمسفر محیط در دو دمای 4 و 20 درجه سانتی گراد با دو نوع فیلم نانو پلیمر سیلیکونی و فیلم پلی اتیلن سبک بررسی شد. نتایج بافت سنجی نان نشان داد که نان غنی شده با پودر تفاله هویج نسبت به نان شاهد کمترین بیاتی و فیلم نانو پلیمر سیلیکونی نسبت به فیلم پلی اتیلن سبک از روند بهتری در کنترل بیاتی نان برخوردار بودند. نتایج رنگ سنجی نیز نشان داد میزان فاکتور L* کاهش یافته ولی میزان a* افزایش یافته است که به علت وجود ترکیبات رنگی داخل نان سنگک غنی شده بود که باعث مشتری پسندی نان تولیدشده بود. نان های قرار گرفته شده در بسته های با اتمسفر اصلاح شده و در دمای 4 درجه سانتی گراد از تازگی بهتری نسبت به بقیه نمونه ها برخوردار بودند. بار میکروبی نان سنگک غنی-شده و شاهد به طور قابل توجهی تحت تاثیر هر سه عامل زمان، دما و اتمسفر موجود در بسته بودند به طوری که با کاهش غلظت دی اکسید کربن و افزایش زمان نگهداری، کپک زدگی در نمونه ها مشاهده گردید.

    کلیدواژگان: پودر تفاله هویج، نان سنگک، اتمسفر اصلاح شده، بسته بندی
  • سجاد نکهداری، صدیقه یزدان پناه* صفحات 39-50

    زمینه مطالعاتی:

     استفاده از جایگزین های چربی در سس سفید نقش موثری در تولید یک محصول کم کالری ایفا خواهد نمود. جایگزین های چربی به طور عمده بر پایه کربوهیدرات و پروتئین هستند. آنزیم ترانس گلوتامیناز میکروبی یک آنزیم از گروه ترانسفرازها بوده، که به صورت گسترده به منظور اصلاح ویژگی های عملکردی پروتئین ها در مواد غذایی مختلف مورد استفاده قرار می گیرد.

    هدف

    از این پژوهش بررسی سطوح مختلف آنزیم ترانس گلوتامیناز بر ویژگی های فیزیکوشیمیایی، ریولوژیکی و گرما وزن سنجی سس سفید کم-کالری می باشد.

    روش کار

    برای این منظور هفت تیمار مختلف با مقادیر متفاوت چربی (0، 25، 50/37 و 50 گرم) و آنزیم (ppm 100 و 200) تولید شد. تمامی آزمون ها در 3 تکرار انجام شد. برای مقایسه میانگین تیمارها از آزمون دانکن در سطح احتمال 5% استفاده گردید. تجزیه و تحلیل داده ها با استفاده از نرم افزار GraphPad Prism 5.0 انجام گرفت.

    نتایج

    حداقل و حداکثر مقدار ویسکوزیته در تیمارهای حاوی ppm 200 و 100 آنزیم با 50/37 گرم چربی مشاهده شد. بیشترین مقدار پایداری حرارتی (10/95 درصد) و فیزیکی (91/95 درصد) در تیمارهای حاوی ppm 200 آنزیم با 50/37 و 00/0 گرم چربی ایجاد شد. تیمار حاوی ppm 200 آنزیم با 50/37 گرم چربی دارای کمترین مقدار (28/64 درصد) آب آزاد بود. حداکثر مقدار تنش برشی (pa30/166) در تیمار حاوی ppm 100 آنزیم با 50/37 گرم چربی مشاهده شد. نتیجه گیری نهایی: این پژوهش نشان داد که آنزیم ترانس گلوتامیناز میکروبی، دارای پتانسیل بالایی برای استفاده در فرمولاسیون سس سفید کم کالری می باشد.

    کلیدواژگان: آنزیم ترانس گلوتامیناز، سس سفید، کالری پایین
  • محسن دلوی* صفحات 51-62

    زمینه مطالعاتی: 

    با بکارگیری مدل های ریاضی می توان به درک بهتر و بهینه سازی فرآیند حرارتی بعنوان تابعی از متغیرهای گوناگون با صرف هزینه و زمان کمتر دست یافت

    هدف

    توسعه مدل انتقال حرارت در حین پاستوریزاسیون رب که قادر به تخمین تعداد باکتری باقیمانده و شدت تخریب رنگ محصول، در هر لحظه از فرایند و به عنوان تابعی از عوامل مختلف را فراهم آورد.

    روش کار

    آزمایشات بر روی قوطی 400 گرمی رب گوجه با بریکس 28 به ابعاد (400× 211) انجام شد و از آب گرم به عنوان عامل گرمایش استفاده شد. در مرحله اول آنالیز شیمیایی و شاخص های اصلی رنگ محصول مشتمل بر L، a و b صورت گرفت. تغییرات دما در نقاط مختلف قوطی با استفاده از ترموکوپل تعیین شد. برای توصیف انتقال حرارت در قوطی رب گوجه فرنگی از ماژول انتقال حرارت در نرم افزار کامسول استفاده شده و سینتیک مرگ میکروبی و تخریب رنگ رب در حین فرایند با مدل انتقال حرارت کوپل شدند.

    نتایج

    در گام اول، گرمترین و سردترین نقطه داخل قوطی با استفاده از مدل تعیین و با نتایج تجربی اعتبارسنجی شد. در گام دوم، تغییرات افت رنگ مدل سازی شد، نتایج نشان داد که بیشترین افت رنگ در شاخص a مشاهده شد. در گام سوم، شدت نابودی باکتری باسیلوس کواگولانس مدل سازی شد، نتایج نشان داد که در شدیدترین رژیم حرارتی اعمال شده، تنها سه سیکل لگاریتمی از تعداد باکتری های باسیلوس کواگولانس در نقطه سرد قوطی کاسته می شود.

    نتیجه گیری نهایی:

     نتایج نشان دادند که مدل توسعه داده شده قادر به پیش بینی دما، بارمیکروبی محصول و تغییرات رنگ محصول در حین فرایند می باشد، در ضمن فرایند حرارتی که در تونل پاستور رخ می دهد، قادربه کاهش بار میکروبی درحد تعیین شده دراستاندارد ملی ایران نیست و امکان بقاء و رشد میکروارگانیزم های مقاوم به حرارت در این شرایط برقرار می باشد.

    کلیدواژگان: افت رنگ، باسیلوس کواگولانس، رب گوجه فرنگی، مدل سازی
  • مهدی خدائی*، سید صادق سیدلو هریس، مرتضی صادقی، سعید ظریف نشاط صفحات 63-83

    زمینه مطالعاتی:

     کوفتگی شایع ترین نوع صدمات مکانیکی میوه ها در فرآیندهای پس از برداشت مانند بسته بندی و حمل ونقل می باشد. بررسی و پیش بینی دقیق و مناسب حساسیت به کوفتگی می تواند در انتخاب نوع محصول و مدیریت بهتر فرآیندهای پس از برداشت میوه ها مفید باشد.

    هدف

    تحقیق حاضر با هدف بررسی حساسیت به کوفتگی میوه زردآلو و مدل سازی آن تحت تاثیر مشخصه های ضربه (انرژی ضربه و بیشینه نیروی برخورد) و مشخصه های فیزیکی زردآلو (شعاع انحنا و سفتی آکوستیک) و با نگرش شناسایی رقم مقاوم تر در برابر کوفتگی انجام شد.

    روش کار

    برای انجام آزمایش های تجربی و اندازه گیری خصوصیات فیزیکی مرتبط از دو رقم زردآلوی شاهرودی و اردوباد استفاده شد. ضرباتی با سطوح مختلف انرژی اعمال و حساسیت به کوفتگی به صورت مدل ها وتوابع رگرسیونی خطی و خطی چندگانه توسعه داده شدند. در این مدل ها، انرژی جذب شده توسط زردآلو به صورت تابعی از خصوصیات ضربه (بیشینه نیروی برخورد یا انرژی ضربه) در کنار خصوصیات میوه (شعاع انحنا و سفتی آکوستیک) پیش بینی شد.

    نتایج

    طبق یافته های این مطالعه همه مشخصه های منتخب و بعضی از اثرات متقابل آن ها تاثیر معنی داری بر میزان کوفتگی محصول داشتند. معادله رگرسیونی خطی چندگانه بهترین مدل برای پیش بینی حساسیت به کوفتگی زردآلو انتخاب شد. نتایج نشان داد با افزایش مشخصه های شعاع انحنا و سفتی آکوستیک میوه، مقدار کوفتگی کاهش می یابد اما با افزایش هر دو مشخصه نیروی برخورد و انرژی ضربه، انرژی جذب شده افزایش پیدا می کند. نتیجه گیری نهایی: با توجه به نتایج این تحقیق، رقم اردوباد حساسیت کمتری نسبت به کوفتگی دارد و برای انتقال به مسافت های طولانی گزینه مناسب تری می باشد.

    کلیدواژگان: زردآلو، سفتی آکوستیک، صدمات مکانیکی، کوفتگی، مدل سازی
  • منیره پور صالحی، فریبا زینالی*، محمد علیزاده خالدآباد، هادی الماسی صفحات 85-107

    زمینه مطالعاتی:

     از راهکارهای مناسب جهت تولید غذاهای فراسودمند، استفاده از منابع مختلف فیبری جایگزین، همچون کینوا می باشد.

    هدف پژوهش:

     در این تحقیق امکان تولید سوسیس کم چرب با افزودن آرد کینوا و بررسی ویژگی های فیزیکوشیمیایی آن مورد مطالعه قرار گرفت.

    روش کار

    سوسیس کم چرب حاوی 10-5 % کینوا تولید و سپس خصوصیات تغذیه ای و فیزیکوشیمایی (حفظ رطوبت، جذب چربی ، افت پخت، فعالیت آنتی اکسیدانی، میزان خاکستر)، بافتی، رنگ و حسی نمونه های تولیدی در طی 30 روز نگهداری در دمای C°4 مورد بررسی قرار گرفت. برای ارزیابی و مدل سازی تاثیر فاکتور های مورد مطالعه بر شاخص های کیفی و کمی از روش سطح پاسخ RSM طرح Behnken-Box استفاده گردید.

    نتایج

    نتایج به وضوح نشان داد که کاربرد آرد کینوا و افزایش سطوح مصرف آن سبب افزایش ظرفیت آنتی اکسیدانی، میزان چربی و رطوبت نمونه های تولیدی شد (p <0.05). علاوه بر این نتایج نشان داد که آرد کینوا سبب افزایش میزان مولفه های رنگی a* و b* سوسیس های کم چرب تولیدی شد. بهینه سازی نیز بر اساس حداقل میزان خاکستر، چربی، افت پخت و حداکثر میزان رطوبت، اسیدیته، ظرفیت آنتی اکسیدانی، شاخص قرمزی، سختی و پذیرش کلی انجام شد. نمونه ای که حاوی % 268/5 کینوا، 5% روغن، % 857/1 آرد و مدت زمان نگهداری، روز بعد از 29 بود، به عنوان نمونه بهینه توسط داوران انتخاب گردید.

    نتیجه گیری نهایی: 

    به طور کلی نتایج این پژوهش نشان داد که افزودن 5% آرد کینوا به فرمولاسیون سوسیس می تواند به تولید یک محصول فراسودمند جدید با چربی کاهش یافته منجر شود.

    کلیدواژگان: کینوا، سوسیس فراسودمند، کم چرب، فعالیت آنتی اکسیدانی
  • سیده سعیده کربلائی امینی، مهرناز امینی فر*، سیده شیما یوسفی، مرجان حیدرزاده صفحات 109-118

    زمینه مطالعاتی: 

    کاهش یا حذف چربی از فرمولاسیون دسرهای شیری با سلامت افراد در ارتباط بوده و اهمیت تغذیه ای بالایی دارد، اما کاهش یا حذف چربی منجر به ایجاد مشکلاتی در بافت محصول می گردد که باید از عامل بهبود دهنده بافت مناسبی استفاده شود. از جمله ترکیباتی که می توانند به عنوان یک جایگزین چربی و همچنین یک عامل بهبود دهنده بافت این فرآورده های کم چرب مورد استفاده قرار بگیرند هیدروکلوییدها هستند.

    هدف

    در این تحقیق اثر مقادیر مختلف هیدروکلویید های بومی (صمغ دانه های به و بالنگو شیرازی)، به عنوان یک عامل بهبود دهنده بافت و جایگزین چربی دسر شیری کم چرب مورد بررسی قرار گرفت. همچنین از روش تجزیه به مولفه های اصلی جهت تعیین روابط پارامترهای حسی و بدست آوردن مولفه های اصلی استفاده گردید.

    روش کار

    در این پژوهش صمغ دانه بالنگو و دانه به در قالب طرح کاملا تصادفی با تیمارهایی شامل غلظت های 1/0، 2/0 و 3/0 به دسر شیری کم چرب اضافه و دسرشیری کم چرب بدون صمغ به عنوان نمونه شاهد در نظر گرفته شد. سپس ویژگی های حسی دسر شیری کم چرب مورد اندازه-گیری قرار گرفت.

    نتایج

    آنالیز آماری نتایج نشان داد استفاده از این نوع جایگزین چربی منجر به ایجاد تفاوت معنی دار) 05/0> (P خصوصیات مختلف حسی می شود، همچنین با استفاده از روش تجزیه به مولفه های اصلی مشخص شد پذیرش کلی نمونه ها همبستگی بالایی با رنگ، نرمی و ژلی بودن دارد. 

    نتیجه گیری نهایی:

    نمونه های دسر شیری کم-چرب حاوی 3/0 صمغ دانه بالنگوی شیرازی و 3/0 صمغ دانه به بالاترین پذیرش را به لحاظ حسی در بین ارزیاب ها به خود اختصاص دادند.

    کلیدواژگان: دسر شیری، صمغ دانه بالنگو شیرازی، صمغ دانه به، مولفه های اصلی، هیدروکلوئید
  • علی معتمدزادگان*، سعید میرعرب رضی صفحات 119-132

    زمینه مطالعاتی:

     استفاده از پوشش های هیدروکلوییدی، روشی مناسب برای کاهش جذب روغن درهنگام سرخ کردن محسوب می شود.

    هدف

    هدف از انجام این پژوهش بررسی استفاده از صمغ های بومی ایران نظیر صمغ دانه یحان و شاهی به عنوان عامل پوشش دهنده بر خصوصیات کیفی هویج سرخ شده بود.

    روش کار

    پوشش های صمغ دانه شاهی و ریحان هر یک به تنهایی در غلظت‏های 5/0 و 1 درصد (وزنی حجمی) و محلول 1 درصد از مخلوط صمغ ریحان و شاهی (با نسبت 1 به 1) تهیه شد. پس از پوشش دهی، درصد پوشش ‏دهی، و پس از سرخ‏ شدن، روغن جذب شده، رطوبت، بافت، رنگ و خصوصیات حسی نمونه‏ ها مورد بررسی قرار گرفت.

    نتایج

    نتایج بدست آمده نشان داد که بیشترین درصد پوشش‏ دهی مربوط به نمونه‏ های 1 درصد صمغ دانه ریحان (21%)، مخلوط 1 درصد صمغ دانه شاهی-ریحان (17%) و 1 درصد صمغ دانه شاهی (66/15%) بود. کمترین مقدار پوشش ‏دهی مربوط به نمونه شاهد بود (233/0%). نمونه شاهد کمترین مقدار رطوبت را داشت (66/56%) و پوشش‏ دهی سبب افزایش رطوبت نمونه‏ ها شد. نمونه های پوشش ‏دهی شده با 1 درصد صمغ ریحان و مخلوط 1 درصد صمغ دانه ریحان-شاهی بیشترین مقدار رطوبت را داشتند (p <0.05). کمترین مقدار روغن جذب شده مربوط به نمونه‏ های پوشش‏ داده ‏شده‏ با صمغ ریحان بود. سختی نمونه ‏های پوشش‏ داده ‏شده‏ با غلظت 1 درصد صمغ دانه شاهی، ریحان و مخلوط صمغ دانه ریحان-شاهی به‏ صورت‏ معنی ‏دار‏ی کمتر از سایر نمونه‏ ها بود (p <0.05). پوشش ‏دهی نمونه ‏های هویج تغییر معنی ‏دار‏ی در خصوصیات حسی آن ایجاد ننمود.

    نتیجه گیری نهایی: 

    با توجه به نتایج حاصله، نمونه پوشش ‏داده ‏شده‏ با 1 درصد صمغ ریحان با کمترین جذب روغن و بالاترین رطوبت و پذیرش کلی به عنوان بهترین نمونه انتخاب شد.

    کلیدواژگان: سرخ‏ کردن، صمغ دانه ریحان، صمغ دانه شاهی، هویج
  • فرهاد خرمالی، سید حسین حسینی قابوس*، ابوالفضل فدوی صفحات 133-150

    زمینه مطالعاتی: 

    کدوحلوایی یک منبع مناسب از کاروتن، ویتامین های محلول در آب و اسیدهای آمینه است. اسفناج دارای مقدار قابل توجهی مواد مغذی ضروری از جمله پتاسیم، کلسیم، منیزیم، فسفر، آهن، مس، روی، پروتئین، فیبر، ترکیبات فنولی، اسیدهای چرب ضروری غیراشباع از جمله اسید آلفا لینولنیک و اسید لینولییک است.

    هدف

    در این پژوهش از پودرهای کدوحلوایی و اسفناج به دلیل دارا بودن ارزش تغذیه ای بالا، فیبر، بتاکاروتن و مواد معدنی (کلسیم و آهن) جهت بهبود و افزایش کیفیت کیک اسفنجی استفاده شد.

    روش کار

    ابتدا کدوحلوایی و اسفناج در شرایط کنترل شده خشک و به شکل پودر در آمدند. سپس به نسبت برابر و در غلظت های 0، 10، 20 و 30 درصد در فرمولاسیون کیک اسفنجی استفاده و ویسکوزیته خمیر و ویژگی های فیزیکوشیمیایی، رنگ، بافت و حسی محصول تولید شده مورد مطالعه قرار گرفت.

    نتایج

    با افزایش درصد جایگزینی پودر کدوحلوایی و اسفناج در فرمولاسیون کیک اسفنجی مشاهده شد که درصد فیبر، آهن و کلسیم نمونه ها به ترتیب از 60/1 به 04/10 درصد، 78/9 به 93/50 پی پی ام و 19/0 به 42/0 درصد افزایش یافت و اختلاف معنی داری بین تیمارها وجود داشت (05/0>P). همچنین مقادیر بتاکاروتن، پروتئین، رطوبت و دانسیته کیک ها نیز با افزایش درصد جایگزینی پودرها به طور معنی داری افزایش یافت (05/0>P). با افزایش درصد جایگزینی پودرها در فرمولاسیون کیک اسفنجی از 0 به 30 درصد، ویسکوزیته خمیر کیک در سرعت برشی s-190 از 72/16 به 82/30 پاسکال ثانیه به طور معنی داری افزایش یافت (05/0>P). سفتی کیک های غنی شده با پودر کدوحلوایی و اسفناج، با افزایش درصد جایگزینی افزایش یافت و در روز اول و روز چهاردهم به ترتیب در محدوده 427/5-071/2 نیوتن و 207/6-354/3 نیوتن به دست آمد.

    نتیجه گیری نهایی: 

    بر اساس نتایج ارزیابی حسی، نمونه حاوی 20 درصد پودر کدوحلوایی و اسفناج بالاترین امتیاز را از نظر پذیرش کلی داشت و با توجه به سایر ویژگی های به دست آمده در این مقاله، تولید صنعتی این محصول غنی شده توصیه می شود .

    کلیدواژگان: بتاکاروتن، پردازش تصویر، فیبر، ویسکوزیته
  • هما علیزاده، اکرم پزشکی*، بابک قنبرزاده، شیوا قیاسی فر صفحات 151-164
    درون پوشانی ترکیبات غذا-داروی آبگریز مانند انواع اسانس های روغنی در سیستم های نانوحامل موجب بهبود حلالیت و جذب آن ها در بدن انسان می گردد و می تواند روشی موثر در غنی سازی مواد غذایی باشد. در این مطالعه نانوامولسیون حاوی نسبت 1:1 اسانس های روغنی زیره سبز- لیموترش به روش تشکیل خودبه خودی با استفاده از سورفاکتانت غیریونی (تویین80) و انواع فاز روغنی حامل؛ میگلیول812، روغن کنجد و روغن ذرت ونسبت سورفاکتانت به امولسیون SER) 15%) تولید شد تا با توجه به نتایج اندازه، توزیع اندازه، پتانسل زتا و پایداری به بهترین فاز روغنی حامل در تولید فرمولاسیون نانوامولسیون اسانس های روغنی زیره سبز و لیموترش بتوان دست یافت. طبق نتایج به دست آمده نمونه نانوامولسیون حاوی نسبت 1:1 اسانس های روغنی زیره سبز و لیموترش (SER=15%) با روغن حامل میگلیول 812 با کوچکترین اندازه قطرات (98/84 نانومتر)، شاخص پراکنش (232/0) و توزیع اندازه قطرات باریک و تک مد برای بررسی و اندازه گیری سایر آزمایشات انتخاب شد. اندازه قطرات نانوامولسیون در طی مدت زمان نگهداری شصت روزه و در دمای 25 درجه سانتی گراد پایدار بود. هم چنین تصاویر میکروسکوپ الکترونی عبوری، اندازه ذرات به دست آمده از دستگاه اندازه-گیری ذرات را تایید کرد. مقدار پتانسیل زتای فرمولاسیون بهینه در طی مدت نگهداری، خیلی جزیی و نزدیک صفر به دست آمد و افزایش زمان تاثیر معنی داری در تغییر پتانسیل زتای نمونه نشان نداد. نتایج بررسی مهارکنندگی رادیکال آزاد نشان داد نانوامولسیون انتخابی دارای خاصیت آنتی اکسیدانی بالایی در مقایسه با اسانس های روغنی به حالت آزاد ونمونه امولسیونی بدون اسانس روغنی بود. برطبق نتایج حاصل نانوامولسیون تولیدی با روغن حامل میگلیول 812 و نسبت 1:1 اسانسهای روغنی زیره سبز-لیموترش و SER=15% دارای شفافیت و پایداری فیزیکی بالایی بود و از آن میتوان به عنوان منبع آنتی اکسیدان از پلی فنول های طبیعی در غنی سازی انواع نوشیدنیها و مواد غذایی استفاده کرد.
    کلیدواژگان: اسانس روغنی، زیره، لیمو ترش، میگلیول، تویین 80، نانوامولسیون
  • ندا عبداللهی، مهرنوش تدینی* صفحات 165-183

    زمینه مطالعاتی: 

    در طی سال های اخیر، استفاده از محصولات حاوی باکتری های پروبیوتیک به دلیل ویژگی های منحصربه فرد آن ها گسترش چشمگیری یافت.

    هدف

    در این مطالعه به تاثیر استارتر لاکتیکی لاکتوباسیلوس پلانتاروم، غلظت نمک و درصد اسید استیک بر خصوصیات شیمیایی و میکروبی زیتون طی 90 روز و در دمای°C 28 مپرداخته شد.

    روش کار

    به منظور اجرای این تحقیق ظروف 1 کیلوگرم زیتون با دو تیمار (8 درصد آب نمک+1/0 درصد استیک اسید) و (6 درصد آب نمک و 3/0 درصد استیک اسید) پر شد. سپس در روز پنجم آزمون، تلقیح باکتری اسیدلاکتیکی صورت گرفت. از ظروف بدون باکتری به عنوان نمونه شاهد استفاده شد. آزمایش های شیمیایی شامل اندازه گیری اسیدیته،pH ، شوری و پراکسید و آزمایش های میکروبی شامل اندازه گیری باکتری های اسیدلاکتیکی، گرمادوست، مزوفیل و مخمر و قارچ مطابق با استاندارد ملی ایران در طی دوره نگهداری انجام شد.

    نتایج

    نتایج نشان داد بار باکتری های اسیدلاکتیکی در تیمارهای لاکتوباسیلوس پلانتاروم و شاهد با افزایش زمان نگهداری افزایش معنی داری داشت (05/0 <p). کمترین رشد باکتری های گرمادوست و بالاترین رشد مزوفیل و مخمر و قارچ در تیمار شاهد اندازه گیری شد (05/0 <p). ویژگی های حسی و pH زیتون در هر دو تیمار شاهد و لاکتوباسیلوس پلانتاروم تحت تاثیر نوع اسیدیته و نمک قرار نگرفت (05/0 <p). تیمار زیتون دارای باکتری لاکتوباسیلوس پلانتاروم بالاترین سطح اسیدیته را داشت.

    نتیجه گیری نهایی:

     باتوجه به نتایج کاهش سطح نمک (6 درصد) و افزایش سطح اسید استیک (3/0 درصد) در کنار تلقیح باکتری های لاکتیکی به خصوص لاکتوباسیلوس پلانتاروم به عنوان روشی کارآمد در طی تخمیر زیتون به کار برده شود.

    کلیدواژگان: باکتری اسید لاکتیک، زیتون، لاکتوباسیلوس پلانتاروم، عمر ماندگاری
  • صمد بدبدک*، بیوک آقا فرمانی، محمد نجاتیان صفحات 185-197
    هدف این مطالعه، بررسی فرآیند شفافسازی غشایی اولترافیلتراسیون با غشای پلیمری بر رفتار شار تراوه، گرفتگی غشاء، دفع ترکیبات پکتینی، آنتوسیانین و تاننی طی شفاف سازی آب انار بود. برای این منظور، تاثیر دما (20 و °C30) و فشار (5/1، 2 و bar 5/2) بر شاخص های عملیاتی غشایی مانند شار تراوه، مقاومت، گرفتگی و دفع ناخالصی ها به وسیله غشای اولترافیلتراسیون بررسی شد. نتایج آزمایشات نشان داد که شار تراوه در فرآیند غشایی شفاف سازی آب انار، با افزایش دما از 20 به ºC30 در فشار bar 5/2، تقریبا 17/42% افزایش یافته بود. بررسی اثرات فشار و دما بر مقاومت کل نشان داد که با افزایش دما از 20 به ºC30 در فشارهای مختلف، مقدار مقاومت کل به طور معنی داری کاهش یافت (05/0 >p). کمترین و بیشترین مقدار مقاومت کل به ترتیب در تیمارهای ºC30-bar 5/1 (1-m 12+10×31/17) و ºC20-bar 5/2 (1-m 12+10×51/35) مشاهده شد. افزایش دما باعث کاهش ویسکوزیته و افزایش ضریب انتشار از لایه کیک سطح غشای به جریان ناتراوه شد. در نهایت مشخص شد که شفاف سازی آب انار، به روش اولترافیلتراسیون در همه تیمارها باعث کاهش پکتین آب انار در حدود 99 % شد. تیمارهای ºC20-bar 2 و ºC30- bar 2 به ترتیب کمترین (25/4 %) و بیشترین (31/15%) مقدار دفع آنتوسیانین ها را داشتند. کمترین (43/42%) و بیشترین (93/50%) مقدار دفع تانن به ترتیب در تیمارهای ºC20-bar 5/1 و ºC30- bar 2 مشاهده شد.
    کلیدواژگان: شفافسازی آب انار، شار تراوه، فرآیند غشایی، جداسازی ناخالصی ها، گرفتگی غشایی
|
  • Leila Nateghi *, Hoda Gorgan, Shila Berenji Pages 1-21
    Introduction

    With enough food production in today's world, many people in the community are struggling with nutrient deficiencies and are in fact struggling with hidden hunger. The World Health Organization estimates that at least 1 in 5 people in the world suffer from iodine, zinc, iron, folic acid, calcium and vitamin A and B deficiencies (Bouis and Saltszman, 2017).Vitamins are one of the most important micronutrients that are vital to human health and are essential for survival in the body. Vitamins are organic compounds that are essential to the metabolism of nutrients, vital to the body, and to the growth and development of health (Dennehy and Tsouronis, 2010). Adding one or more micronutrients to the staple diet is said to be one of the most effective strategies to prevent micronutrient deficiency (Jafarpour and Mazandarani, 2013). Dairy dessert is a product that contains at least 50% fresh cow's milk or reconstituted milk that is prepared with authorized additives after the heat process (Miyani et al., 2016). Dairy dessert is among the children's favorite foods with its main components being milk and milk products. Vitamins are divided into two groups of water and fat soluble. Vitamins A and D are fat-soluble vitamins that are very common (Calvo and Whiiting, 2013). Vitamins A and D3 deficiency is one the most common micronutrients deficiency in most communities. Milk-based dairy products are important carriers for enrichment of foods with fat-soluble vitamins. Vitamins A or retinol are used to improve the eyesight of people in low light, such as at night and maintain eye surface health, body defense and skin health. Vitamin A does not exist purely in plant sources, but in its precursors, carotene, in various forms. It is present in 4 forms of retinol, retinal and retinoic acid (Fennema, 2008). Vitamin D, called calcifrol, is one of the essential vitamins and fat-soluble vitamins that help bone growth and health by controlling calcium and phosphorus balance. It helps in bone metabolism by enhancing the absorption of phosphorus and calcium from the intestines and by reducing the excretion of the kidneys, as well as by translating the cells of the cell's nuclei into cell growth (Holick, 2006). Probiotics are living microorganisms exerting healthful effects on the host via balancing the intestinal microflora mainly marketed as probiotic dairy products. The objective of this study was to assess the feasibility of enrichment of probiotic dairy dessert with vitamin A and D3.

    Material and methods

    To do so, vitamin A (2000, 4000, 6000 lu/l) and vitamin D3 (400,500, 600 lu/l) individually and combind (4000 lu/l vitamin+500 lu/l vitamin D3) were added to the dairy dessert inoculated with Bifidobacterium bifidum (108 cfu/ml). Physicochemical (pH by pH meter WTW model, acidity by the method titration in the presence of phenolphthalein with with 0.1 normal NaOH, dry matter by the method weight difference, hardness by Texture Analyzer, colorimetric (L*, a*, b*) by 14-megapixel digital camera and Photoshop CS5 application, syneresis by measuring the diameter of the created aura (100 g / cm) on the filter paper, vitamin A and vitamin D3 by HPLC), microbial (probiotic bacterial count by MRS-Agar medium ) and sensory (flavor, color, texture, and total acceptance by Hedonic 5-point) properties were evaluated over 28-d storage at 4°C. Data were analyzed by two-way and one-way variance Duncan test at 95% confidence level by using SPSS 21.

    Results and discussion

    The results showed that pH, hardness, vitamin D3, vitamin A and viability reduced and acidity and syneresis increased over time. The highest viability was found for T5 (2000 lu/l vitamin A+ 108 cfu/ml Bifidobacterium) showing no significant difference from other treatments (p>0.05). This may be due to the metabolic activities of Bifidobacterium bifidum by consuming nutrients such as sugars in dairy dessert and producing organic acids. The pH and acidity of dairy products is affected by the balance between the nitrogenous compounds of the products resulting from proteolytic and lactic acid reactions resulting from the fermentation activity of lactic acid bacteria. Also, with time and increased activity of probiotic Bifidobacterium bifidum, acid production increased and could increase the acidity of the samples. The reason for the decrease in texture hardness during storage can be due to increased acidity and sequestration and a decrease in dry matter of the specimens during 28 days of storage. Some studies show that by decreasing the pH during storage, irregular and non-uniform protein networks are formed and lead to high hydration in the product. Investigation of dry matter changes of probiotic dairy desserts containing different concentrations of Vitamin A and D3 showed a slight decrease during dry matter storage of the samples but these changes were not statistically significant (p>0.05). According to the results, the color of the dessert samples became brighter with increasing amount of vitamin A, and the brightness of the samples decreased with increasing amount of vitamin D3 and the color of the samples tended to darken. This was due to the clearness of vitamin A powder and darker vitamin D3 than to vitamin A and dessert samples when added to the samples. Research has shown that vitamin A loss during storage is directly affected by light and indirectly by fat content and packaging conditions. Exposure to vitamin A-containing light at wavelengths less than 500 nm causes damage to vitamins such as A, C and riboflavin, and this is called photosynthesis. The results of sensory evaluation revealed that treatment and time had significant (p < 0.01) effect on the flavor, as the amount of vitamins A and D3 increased, flavor score decreased slightly. Added vitamins A and D3 had no significant effect on variations of color scores.

    Conclusion

    Given the results of sensory and viability evaluation, treatment containing 500 lu/l vitamin D3+ 4000 lu/l vitamin A+108 cfu/ml Bifidobacterium bifidum was selected as the superior treatment due to the highest bacterial viability and total acceptance and the presence of both vitamins A and D3 exerting healthful effects. Suggest to investigate the circumstances and the type of packaging to preserve vitamins A and D3 during storage, the relationship between oxidation and reducing the amount of vitamins A and D3 in dairy desserts and the role of vitamin A or D3 volatile and non-volatile flavor compounds in effect on dessert dairy.

    Keywords: dairy dessert, vitamin A, vitamin D3, Bifidobacterium bifidum
  • Milad Asadi Pages 23-37
    Introduction

    Because of its good flavor, Sangak bread is one of the most widely used kinds of flat bread in Iran. Dietary fiber has been the focus of attention in recent years due to its beneficial physiological and metabolic effects. Most studies have focused on reducing and delaying bread staling using bread improvers. There are many ways to reduce bread staling today, such as the use of fiber in bread formulation. One of the abundant and inexpensive sources for enrichment of foods with fibers is waste from the processing plants including fruits and vegetable powder. Some high-fiber wastes include tomato, beet, apple, and carrot powders, which are often wasted. Carrot contains large amounts of fiber, protein, fat, and carbohydrates. Carrots have been used in foods such as bread, cakes, pickles, enriched wheat bread, and biscuit to enhance the fiber content of these products. In our country, the consumption of flat breads such as Lavash, Sangak, Barbary, and Taftoon is high. Sangak bread has the highest amount of insoluble fiber among traditional bread types in the country, and adding soluble fiber to it, due to differences in physiological responses of these fibers, seems desirable. This study aims to use carrot powder waste and extract its fiber to increase the nutritional value of Sangak bread and to prevent bread waste by using new and cost-effective packaging.

    Materials and Methods

    In this research, wheat flour with a 90% extraction rate, was supplied from the Maryanaj-kar Co in Hamedan. Carrot powder was collected as a juice waste from the local fruit juice shops. Wheat flour (1 kg), salt (45 g), and water were used to prepare the dough. Carrot powder was added to the dough at different percentages of 3, 5, and 7 % (w/w based on flour) at the mixing stage. The dough was then rested at 25 ± 2°C for 1 to 2 hours to complete fermentation. Wheat flour (3 kg), salt (45 g), and water (as needed) were used to prepare the dough. Then, the sourdough (20%) was added, and the dough stirred for half an hour with the stirrer. The fiber was added to the dough at various levels during the mixing process. It was then baked in the oven for 4 min at about 400°C. For the packaging of bread, silicon Nano-polymer film and lightweight polyethylene film were prepared from Tehran Aitak Nano-polymer and Tehran Plast companies, respectively. The mechanical properties, qualitative and microbial properties of enriched Sangak bread and control under modified atmosphere (80% carbon dioxide, 20% nitrogen) and ambient atmosphere at 4 and 20°C and two kinds of silicon nano-polymer film and light polyethylene film were studied. Puncher test is a destructive test in which a sample is studied under uniaxial tension until failure. Puncher test was done using food testing device (Bbt-Fro. 5 th.D, model: Zowick/roell 14, made in Germany) equipped with a load cell (X Force Hp nominal Force: 500 N Capacity) in the laboratory of biosystem group at Bu-Ali Sina University. The color model of L* a* b* and the Chinese colorimeter (model HP Hanter Lab) were used to evaluate the color and determine the colorimetric factors. To evaluate the concentrations of O2 and Co2 gases, three packages of coated and uncoated treatments stored at 4 and 25℃ were provided and their concentrations were measured every other day using gas analyzer machine (WITT- GASTECTHNIK OXybaby 6i; made in Germany). The control and enriched breads during the storage period were examined for appearance of microbial load. The present study was designed in the form of a completely randomized design in factorial with 3 replications. The data were normalized via Minitab14 software and analyzed by SPSS software at the probability level 5% and 1%.

    Results and discussion

    As the storage time increases, the bread becomes stiff and the amount of force required for the punching test increases. The results of tissue and puncher test showed that by adding carrot powder to bread, the bread staling process decreased, and Silicon nano-polymer film had a better process in staling the bread than light polyethylene film. Colorimetric results also showed that the amount of L* was reduced but increased by a* due to the presence of colored ingredients in Sangak bread, which made the bread maker more attractive. The results showed that the enriched bread with nano-film had the highest b* factor compared to the control bread. Changes in oxygen and nitrogen at modified atmospheric conditions during storage showed that the oxygen content of the nano-films at modified atmospheric conditions was gradually increasing. It can be concluded that silicon nano-polymer films have less permeability for oxygen inlet and outlet. This process caused the samples in the silicon nano-film film to die later due to the oxygen control properties of the films in the polyethylene film. The results of polyethylene film showed that this film had high permeability for inlet and outlet gases so that carbon dioxide content varied between 3% and 80%, which was a significant difference in polyethylene film. The highest color difference was observed in the bread sample enriched with nano-film and the lowest color difference was observed in the control bread sample with polyethylene film. The lowest color difference was observed in the samples using nano-film. The microbial load of enriched and control Sangak bread was significantly influenced by all three factors of time, temperature, and atmosphere in the package, so that by reducing carbon dioxide concentration and increasing storage time, mold in the samples seen. Microbial results of the samples kept at 4°C for up to 20 days did not show any mold, but samples kept at 20°C for 6 days.

    Conclusion

    The overall results showed that with the addition of carrot powder to flour, the protein, fat, and fiber contents increased but the carbohydrate content decreased. Thus, the carrot powder had a significant effect on Sangak bread. The results of the films showed that silicon nano-polymer film prevented the staling process during the storage period compared to the light polyethylene film. Results of storage temperature showed that 4°C for 20 days prevented bread molding but 20°C only prevented bread spoilage for 9 days. In-package gas results showed that at 4°C the modified atmosphere had a better tendency to preserve bread than the ambient atmosphere.

    Keywords: Sangak bread, Modified atmosphere, Carrot powder, Packaging
  • Sajad Negahdari, Sedigheh Yazdanpanah * Pages 39-50
    Introduction

    There are numerous concerns regarding dietary fat as an additional source of calories, saturated fatty acids, cholesterol, and the association between fat and incidence of cardiovascular disease, cancer and obesity. According lyconsumers tend to use low-calorie and low- fat products such as mayonnaise, yogurt, and egg-free products, while the quality of these products has not changed and is similar to that of high-fat products. Therefore, in case of reduce fat percentage, it is necessary to use compounds that are capable of simulating fat properties. The use of fat substitutes in white sauce will play an important role in producing a high-calorie product. Fat alternatives are mainly based on carbohydrate and protein. Proteins are ideal compounds for simulating fat properties in foods. The transglutaminase enzyme, a protein with a molecular weight of 37, 368 Daltons, contains 331 amino acids that are classified in the group of transferase enzymes (EC 2.3.3.13). It is used to modify the functional properties of proteins in various foods. The function of this enzyme is to bind glutamine amino acid from one protein and lysine amino acid from another protein without adverse effect on biological access of lysine and nutritional value of consequently protein.

    Purpose

    Due to the unique use of transglutaminase enzyme in improving the quality of products, the aim of this study is to evaluate the effect of this enzyme on the production of low fat white sauce and evaluation of physical (thermal and physical stability), rheological (viscosity and shear stress) properties and thermal gravimeteric analysis (free and bonded water) are the product.

    Material and methods

    To make the sauces, first the flour was poured into the mixer with milkand after complete mixing (45 s) of microbial transglutaminase enzyme with activity 80 units/g was added gradually into the mixer and it was stirred well (one minute), then the butter was added to the mixture and stirring continued for 5 minutes and after emulsion formation and proper texture, the sauce samples were filled in glass containers. In the used treatments, the percentage of fat removal was equal to replacement percentage of milk and flour.The amount of fat reduction was calculated based on the amount of added butter. For this purpose, seven different treatments were produced with different amounts of fat (0, 25, 37.50 and 50 g) and enzyme (100 and 200 ppm). All tests were performed in 3 replications. Duncan test at 5% level was used to compare the mean of treatments. Data were analyzed using GraphPad Prism 5.0 software.

    Results and discussion

    Minimum and maximum viscosity values were observed in treatments containing 100 and 200 ppm enzymes with 37.50 g fat. High concentrations of transglutaminase enzyme increase the degree of polymerization and and eventually the viscosity increase, compared to the control sample. In this case, the viscosity can increase up to 100 times. The maximum amount of shear stress (166.30 pa) was observed in the treatment containing 100 ppm enzyme with 37.50 g fat. The presence of the transglutaminase enzyme produces polymers with high molecular weightof protein monomers without altering their chemical properties, as a result, the viscosity increases. Reducing the amount of fat in the formulation reduces the shear stress in the final product. The reason for this decrease is attributable to decrease in the viscosity of the product with decrease in fat percentage. By increasing contact level of oil drop, the force of friction between the particles increases, which affects the viscosity. The highest amount of thermal stability (95.10%) and physical stability (95.91%) was obtained in treatments containing 200 ppm enzyme with 37.50 and 0.00 g fat. In thermal and physical stability, cause of increasing percentage of stability in all treatments compared to the control treatment can be attributed to the effect of the transglutaminase enzyme (Protein compound) in cross-linking between protein molecules and creating a coherent network lattice and increased friction that is prevent of phases separation. According to Stoke's law, with increasing viscosity ofcontinuous phase, speed of phase separation will be slower and the emulsion more stable, if the viscosity decreases, the particles move more and leaking water increases. The mechanism of the effect of transglutaminase enzyme on proteins is polymerization, which has led to changes in the hydrophobic molecules of the proteins. Therefore it effects on the functional properties of the enzyme, the solubility effect, gel formation, emulsification, foaming, viscosity and water holding capacity. The treatment containing 200 ppm enzyme with 37.50 g fat had the lowest amount (64.28%) free water. Treatment with 25 g fat containing 100 ppm transglutaminase enzyme had the highest amount of free water. Adding transglutaminase enzyme to foods increases the gel strengthandat the same time, the pores become smaller and texture become denser. More free water is trapped in the gel- like network. Like free water for each treatment, bonded water is reported. But in the 100 and 200 ppm treatments with 37.50 g fat and the 100 and 200 ppm treatments with the lowest fat content, the water content of the bonded water was significantly reduced. Compared to the control treatment, the bonded water decreased significantly. By reducing fat and increasing protein, the protein network is denser and able to bind more water in a given volume.

    Conclusion

    This study showed that, according to the microbial transglutaminase enzyme has plant origin, it has great potential for practical uses in industryand it can be suggested to sauce manufacturers, especially in the production of mixtures whose fat is reduced, such as formulation of low-calorie white sauce, with maintaining the desired properties.

    Keywords: Transglutaminase enzyme, White sauce, Low calorie
  • Mohsen Dalvi * Pages 51-62
    Introduction

    In Iran, tomato paste is the most important tomato product because of its widespread use for the preparation of various food menus. Tomato paste is the concentrated product obtained by evaporating tomatoes from which the seeds and skins have been removed (Singh and Headman, 2014). Lactic acid bacteria and spore-forming bacteria are the primary groups of microorganisms involved in the spoilage of tomato products. Among these microorganisms, B. coagulans is considered to be the most important spoilage bacteria, not only because it is more frequently encountered but it has a higher heat resistance than the other spore formers involved in the spoilage of tomato products (Zimmermann, Schaffner, & Aragão, 2013). It is responsible for causing “flat sour” spoilage of canned foods due to the production of lactic acid without gas formation (Mallidis, et. al., 1990). Tomato paste is pasteurized with a mild heating process to eliminate or reduce the number of spoilage microorganisms to an acceptable level and provide conditions that limit the growth of other spoilage microorganisms. However, when food is heated to destroy microorganisms, several types of chemical and physicochemical reactions also occur, some desirable such as enzyme destruction, cooking, texture softening, others less desirable but often inevitable to some degree (e.g., nutrient destruction and loss of organoleptic quality, color, texture, and flavor). These reactions are essentially chemical and temperature-dependent. The art of canning depends on being able to choose processes that are microbiologically safe but result in the least loss of quality (Holdsworth and Simpson, 2016). Color as a very important quality factor in tomato concentrates which can influence consumer acceptability may be damaged during heat processing. Discoloration and browning of tomato paste are the results of various reactions. Among them, the most common are pigment degradation, especially carotenoids (lycopene, xanthophyll, etc.) and chlorophyll, and browning reactions such as the Maillard reaction and oxidation of ascorbic acid (Barreiro, Milano, & Sandoval, 1997). Kinetics of pigment and color degradation of vegetables during thermal processing has been studied. The major finding of these studies is that both pigment and color degradation during thermal processing follows the first-order reaction kinetics and the effect of temperature on the rate of reaction can be modeled by the Arrhenius equation (Chutintrasri and Noomhorm, 2007). Our previous study also indicated that the cold point location is at the radial center between the middle and top of the can at a height of 60% of the can height from the bottom. To follow-up on our previous research, the following objectives will be pursued in the current study. To develop a mathematical kinetic model describing the color loss in tomato paste as a function of temperature and in the second step, by using results obtained from heat transfer modeling, we develop a model that can measure and quantify temperature at any point, the amount of microbial load in the product, and changes in color indices at different points in the can. Modeling kinetics of microbial inactivation and color loss during pasteurization is a good means of further optimizing pasteurization conditions of tomato paste on an industrial level.

    Material and methods

    Experiments were run with batches of 400 g of tomato paste (pH = 4.1 and 28°Brix) in cylindrical cans (211×400) and hot water was used as the heating medium. The chemical analysis of the tomato paste sample was performed in the first step and the thermal properties of the tomato paste product were determined based on the sample chemical composition. Temperature changes at various positions in the container were checked with a data logger (Testo, Germany) coupled with computer and thermocouples type-K (at 5 min intervals). The data were used to validate the developed model. A 2D heat transfer model was developed in a cylindrical can by using the numerical solution of the Fourier second law. The computer simulation was done using COMSOL Multiphysics, Ver. 4.0. The microbial inactivation model and the color loss of tomato paste model were considered as a first order reactions and coupled with heat transfer module.

    Results and discussion

    Firstly, the cold and hot points in the can were determined and validated against experimental data. Results showed that the cold point is located at a height of 60% of the can height from the bottom and the hot point is located at the surface of the can. Since microbial inactivation and chemical reactions which deteriorate the quality of food materials are essentially chemical and temperature-dependent, the changes in microbial load and color loss were monitored in two mentioned points. The effect of pasteurization temperature on the color degradation and microbial inactivation of B. coagulans in a can were followed first-order reactions and temperature dependence of color loss and microbial inactivation were expressed by the Arrhenius equation and thermal resistance constant (Z_value) respectively. As we expected, results indicated that the very high temperature will cause severe color degradation of the food near the surface long before the food at the center of the container has risen in temperature. The surface color change of tomato paste was more rapid at higher temperatures. The color parameters L, a, and b values changed at different rates with different heating regimes. At the following heating regime as a most severe heat regime (heating temperature = 95 oC, heating time=30 min and initial temperature =70 oC) the L, a and b color parameters at the near surface of the can change from 22.9 to 13.0, from 22.6 to 7.9 and from 10.9 to 9.1 respectively. Another point that can be drawn is that the thermal degradation in parameter (a) was higher than other color parameters, so that about 60% decrease in this index is observed in the above thermal regime. Although it has been established that the minimum safe heat process given to food with low pH should be at least 5D for pathogenic microorganisms and 8D for spoilage microorganisms (Toledo, 2018), our results showed that the pasteurization tunnel in the most severe heating regime can only provide a 3D reduction of B. coagulans in the thermal center of the cans. This was due to slow heat penetration to the center of the can and high heat resistance of a B.coagulans. Based on these facts we can conclude that the thermal processing used in the tomato paste industry is inadequate and the first stage of the product's thermal process (tubular pasteurization) plays a more important role in reducing microbial load than in the pasteurized tunnel.

    Conclusion

    A two-dimensional finite element model was developed to calculate temperature histories at two selected points within container, coupled with microbial inactivation of B.coagulans and color degradation kinetics. Results showed that by applying more intense time- temperature in the pasteurizer, the color of the product was more damaged but the heat processing was not sufficient to reduce the number of microorganisms to a certain degree (5D) in the thermal center. However, it is necessary to point out that, to establish a more accurate thermal process, it is necessary to find the load of B. coagulans in the under-processed product.

    Keywords: Color loss, Bacillus coagulans, tomato paste, Modeling
  • Mehdi Khodaei *, Sadegh Seyyedlou, Morteza Sadeghi, Saeid Zarifneshat Pages 63-83
    Introduction

    Fruits confort several main procedures including harvesting, sorting, packaging, storage, and transportation. During these processes, fruits could encounter either static or dynamic loadings that potentially cause mechanical damage (Polat et al., 2012). Bruising is the most common type of post-harvest mechanical injury in fruits. Around 30–40% of the agricultural products become decayed due to mechanical damage. Mechanical injuries, such as bruises are difficult to limit. However, proper understanding the mechanism of bruises occurrence allows to reduce this undesirable phenomenon (Komarnicki et al.; 2017). Susceptibility measurement of the bruising can provide useful information toimprove postharvest handling and storage operations (Zhu et al., 2016). The bruise susceptibility of fruits and vegetables is themeasurment of response to external loading. Bruise prediction models can provide useful information about the influence of fruit properties on bruise susceptibility, leading to recommendations for fruit handling (Van Zeebroeck et al., 2007b). Bruise prediction models connect the impact characteristics (drop height, contact force and impact energy) to bruise damage, taking into account some fruit properties (radius of curvature, stiffness, temperature, color, etc) that determine bruise sensitivity. Apricot is one of the most vulnerable fruits to mechanical injuries. Therefore, controlling and reducing the mechanical injuries can improve the quality of apricot and increase its export. For this reason, the aim of present study was to evaluate the apricot bruising susceptibility and developing bruise prediction models for apricot fruit.

    Material and methods

    In the present study, two Iranian apricot varieties "Shahroudi" and "Ordubad" were used for experimental tests. All the fruits were harvested at their traditional maturity in June 2018. In order to avoid and minimize any pre-bruising, all the apricots were carefully hand-picked. Any extremely small or large fruits were excluded from the tests. The physical and mechanical properties of apricots and main characteristics were measured. A curvature meter was used to measure the radius of curvature locally at the point of impact. The acoustic impulse technique was used to measure the fruit firmness non-destructively. Constant height multiple impact (CHMI) method was used to measure apricot critical energy level. In this study bruise susceptibility of the studied cultivars was evaluated using a pendulum impact device to measure required parameters including the impact force, impact velocity, and impact energy. All apricots were placed in the special chamber and a spherical metal impactor was used to impact the apricots. Absorbed energy criteria have been used to quantify bruise damage. In this study, three different impact levels applied in the experimental tests. To obtain the absorbed energy the difference between impact energy and rebound energy was calculated and recorded for each impact test. Different regression models (linear, multiple-linear, and logarithmic) were developed to predict bruising in apricot fruit and were evaluated by proper criteria (R2, R_adj^2, and RMSE). In these models, impact characteristics (impact energy or peak contact force) along with fruit characteristics (acoustic stiffness and radius of curvature) were considered as independent variables and the absorbed energy as the dependent variable. Two separate regression models were developed. In the first model (model 1) independent variables were peak contact force (PF), the apricot radius of curvature at the location of impact (R), and apricot acoustic stiffness (S). In the second model (model 2) PF was replaced by the impact energy (Ei) and the other two variables were the same as the first model. Data analyses were performed using SPSS (version 25.0) and JMP Pro (version 13) software packages.

    Results and discussion

    Experimental data analysis showed both radii of curvature and acoustic stiffness had a negative effect on apricot absorbed energy in Shahroudi and Ordubad cultivars. In Shahroudi cultivar, the average radius of curvature was 20% less than the Ordubad cultivar. Also, the average acoustic stiffness in the Ordubad cultivar was 19% higher than acoustic stiffness in the Shahroudi cultivar. Therefore, the average bruising ratio in the Shahroudi cultivar was 5% higher than the Ordubad cultivar. In both cultivars, apricots with a lower radius of curvature at the contact area had high absorbed energy than those with a higher radius of curvature. By increasing the peak impact force from 16.5 to 30 N, the average absorbed energy in the Ordubad cultivar was increased by 71%. While this amount was 78% in Shahroudi. Also, the mean difference between the absorbed energy between the initial (19 mm) and final (27 mm) range of the curvature radius in Shahroudi and Ordubad cultivars was 18 and 29%, respectively. Also, the mean energy absorption difference between the initial and final acoustic stiffness ranges in Shahroudi and Ordubad cultivars was 27% and 32%, respectively. In other words, with increasing acoustic stiffness, the amount of absorbed energy in Shahroudi and Ordubad cultivars was decreased 27 and 32%, respectively. The effect of the impact energy parameter on the absorbed energy was similar to the peak contact force. Results of prediction models indicated that all of the studied independent parameters, including peak contact force, impact energy, the radius of curvature, and acoustic stiffness, and some of their interactions were significant on the absorbed energy at the 5% probability level. The results showed that increasing the two parameters of impact energy and peak contact force increases the energy absorbed in apricots.

    Conclusion

    This study was conducted to develop statistic models among different kinds of regressions, to estimate the apricot fruit bruising susceptibility by absorbed energy. Absorbed energy parameter is a good estimation property to quantify bruise damage in apricot. There were significant main effects and significant interactions between fruit properties (radius of curvature and acoustic stiffness) and the impact properties (peak contact force or impact energy). In both apricot cultivars, damage to the fruit decreased with the increase of acoustic stiffness. So, softer apricots developed a higher amount of absorbed energy. Also, smaller radii of curvature led to more bruise damage in both cultivars. It was concluded that Shahroudis cultivar was more susceptible to bruising rather than Ordubad cultivar. The results of this study in predictive regression models showed that a multiple-linear model was selected as the best model for fitting experimental data.

    Keywords: Acoustic stiffness, Apricot fruit, Bruising, Mechanical damage, Modelling
  • Monireh Poursalehi, Fariba Zeynali *, Mohammad Alizadeh Khaledabad, Hadi Almasi Pages 85-107
    Introduction

    Today, Excessive consumption of fatty foods, especially high-fat meat products, has increased obesity, hypercholesterolemia, cardiovascular disease or cancer (Fernandez-Diez et al., 2015). Quinoa belongs to the Chenopodiaceae family, the genus Chenopodium, a high-nutritional starchy seed that contains nutrients and can be used in the production of meat products (Fernandez Diaz et al. 2015). Quinoa's antioxidant activity is associated with vitamin E content and phenolic compounds. Tocopherols (vitamin E) are fat-soluble antioxidants found in the chloroplast membrane. They interact with unsaturated acyl lipid groups and stabilize the membrane and release different types of reactive oxygen (Sadler 2004). Despite proving the nutritional effects of quinoa, its effect on promoting the nutritional value of various products, including meat products, has not been investigated. Due to the disadvantages of the fat used in meat products and the antioxidant effects of quinoa seeds, in this study, quinoa flour was used as an alternative to part of the oil in sausage formulations and the physicochemical properties of the produced sausages were investigated.

    Material and methods

    15 sausage samples containing different amounts of flour (4-0%), oil (5-15.3%) and quinoa (10-0%) were produced. Formulations include chicken (55%) and other ingredients including ice powder (15.87%), fresh garlic (1%), salt (0.9%), sugar (0.7%), polyphosphate (0.3%) was carrageenan utah (1%), whey powder (2%), starch (3%), nitrite (0.1%), ascorbic acid (1.25%) and spices (1%). The meat was minced with garlic in a meat grinder and then ground in an electric mills with salt and polyphosphate for 2 minutes. The meat dough was then mixed in a food processor with carrageenan, sugar, water powder, starch, flour and quinoa for a few minutes. Then ice and half the oil were added and mixed again. After the dough was homogeneous, when the ingredients became sticky, the other half of the oil and spice mixture were added. Finally, the mixture was filled with filler in the coating and cooked by Ben Marie method for 80 minutes at 80 °C. At the end, the cooked sausages were placed under cold water for a few minutes to heat shock and then stored in the refrigerator at 4°C until the experiments were performed. Then physicochemical properties (moisture retention, fat absorption, cooking loss, antioxidant capacity, and ash content), color, texture hardness and sensory evaluation during 30 days storage at 4°C were studied. To evaluate and modeling the influence of the factors studied on the qualitative and quantitative indices, the RSM response method was used to Behnken-Box design.

    Results and discussion

    Measuring ash showed that percentage of ash increased with increasing quinoa content. Quinoa as an pseudocereal, a good source of minerals, such as calcium, magnesium, iron, zinc, phosphorus, fiber and vitamin B, more than just cereals. It is also a good source of vitamin E, thiamine, folic acid and vitamin C (Valencia Chamorro 2003). The reason that quinoa increases the amount of ash in sausages compared to flour is due to the increase in these minerals and vitamins in its structure. The results of measuring the moisture content showed that if the quinoa increased, the moisture increased. Moisture also increases with Increase the amount of flour (p˂0.05). In a study of pasta containing quinoa flour, the retention of moisture in pasta containing quinoa flour was higher than that made from wheat flour, which is due to the presence of various hydrophilic compounds such as polysaccharides and proteins in quinoa (Lorusso et al. 2017). In another study on the replacement of fat with quinoa in dry sausages, it was reported that the average moisture content in the control sausages was lower than the samples containing quinoa as a fat replacer (Fernandez Diaz et al. 2015). The results also show that the interaction between oil, quinoa and time is significant. In the study of the effect of quinoa flour on burgers, the highest fat content for burgers prepared with 7% and 10% of quinoa flour was determined. The effect of adding quinoa on fat content may be related to the storage of oil in quinoa flour, which leads to more storage of oil in meat products during the cooking process (Ho and Yu 2015; Taloker 2015; Liu et al. 2015). On the other hand, in low quinoa values, by increasing flour content, the increase in acidity is high. A study of frankfurter sausage samples made with tilapia fillets containing 20 grams of quinoa flour, showed that these sausages had a significantly higher pH compared to control sausages with a pH of 5.6, resulting in acidity in these sausages decreased (Zapata et al. 2016). In addition, quinoa prevents cooking loss. A study of quinoa-rich bread found that the lowest bread crumbs were found to be related to those with the highest amount of quinoa flour and the lowest wasted to those with the least amount of quinoa flour, which could be due to more water absorption during preparation. The dough has a high water holding capacity in hydrochloride and reduces water evaporation during cooking or, in other words, increases the final moisture in the samples containing quinoa (Pour Mohammadi et al., 2009). In this study, DPPH was used to investigate the antioxidant capacity of quinoa flour during sausage storage. Statistically, among the factors influencing the antioxidant activity of sausages, quinoa flour was significant at a probability level of P

    Conclusion

    The results of this study showed that quinoa flour increased the antioxidant capacity in the produced samples and due to the presence of various hydrophilic compounds such as polysaccharides and protein in quinoa flour, the moisture content of sausages increased. Quinoa flour also reduced the amount of lightness (L*), increased the amount of redness (a*), and also increased the amount of yellowness (b*) due to its carotenoid compounds. On the other hand, due to the presence of unsaturated fatty acids and phospholipids in quinoa flour, the fat of sausages increased. But quinoa did not have a significant effect on the hardness of sausages.

    Keywords: Quinoa, functional sausages, Low fat, Antioxidant Activity
  • SEYEDEH SAEIDEH KARBALAEI AMINI, MWHRNAZ AMINIFAR *, SEYEDEH SHIMA YOUSEFI, MARJAN HEIDARZADEH Pages 109-118
    Introduction

    Production of low-fat or high-fat products in order to reduce the amount of calories in excess of the body's consumption needs, is one of the developing circles in the food industry. Hydrocolloids are among the compounds that can be used to improve the properties of these low-fat products. Hydrocolloids extracted from the native seeds of Iran, such as Cydonia Oblonga and seed gum Lallemantia, have a good ability to be used in these cases. Therefore, without the use of data analysis methods, it is not possible to fully understand these studies and achieve practical results. Sensory evaluation and consumer play an important role in the development of food science and industry. Sensory evaluation studies provide extensive data. In sensory evaluation of food, the analysis of the main components provides a way to visualize the relationship between the product or sample and its sensory characteristics or traits. In fact, the analysis of the main components is used to create a simplified view of the multidimensional data set. The data set becomes smaller data due to the correlation of the main variables, and as a result, the main components are formed. Each major component is a linear combination of the main variables. Analyzing the main components is a useful way to evaluate data, as many researchers have used this method to analyze the results of sensory evaluation. In fact, the application of this method has been measured for a large number of the main variables (called the main components) are obtained, which include the highest varians of the observed variables. Therefore, with this method, the number of the main variable is reduced, and a smaller number of artificial variables (called the main components) are obtained, which include the highest variance of the observed variables. However, the effect of Cydonia Oblonga and Lallemantia native gums on the sensory properties of low- fat milky dessert has not been studied. Therefore, this study was conducted to investigate the effect of different levels of two types of grain gum Cydonia Oblonga and seed gum Lallemantia as a tissue healing agent and fat replacement on the sensory characteristics of low-fat milk dessert and another goal was to determine the correlation coefficient between sensory parameters so that the factors that had the greatest impact on overall acceptance were identified.

    Material and methods

    In this study, native gums of Cydonia Oblonga and Lallemantia in the from of a completely radomized design at the levels 0.1, 0.2 and 0.3% gums concentrations were used as the low-fat milky dessert as a textur improver and fat replacer. Then, the method of analying the main components was used to determine the relation ships of sensory parameters and to obtain the main components.

    Results and discussion

    The results of comparing the mean related to sensory testing showed that the amount of Scent and Taste and softness in different samples did not differ much (P <0.05). However, sensory evaluators were more interested in softness in samples containing 0.3 ,0.2 Lallemantia gum. The lowest amount of softness was related to the full fat control sample. The degree of porosity in different samples did not differ significantly (P <0.05). Congelation in the full fat control sample was more appropriate. Samples containing 0.3 Lallemantia gum and 0.3 Cydonia Oblonga gum were the best in terms of jelly. The being oily in the full fat control samplewas more adeguate. Scent and Taste were best in samples containing 0.3 Lallemantia gum and 0.3 Cydonia Oblonga gum. In general, overall acceptance on the amount of gum, sensory evaluators liked the samples with more Lallemantia and Cydonia Oblonga gums. Also, the results of the analysis of the main components showed that the highest correlation was between the general acceptance with the color parameter, which showed a correlation coefficient of 0.702. Softness with a coefficient of 0.659 and being jelly with a coefficient of 0.560 were also closely related to general acceptance. The Selection of the main components based on the specific value showed that the slope of the line is higher in the first 3 components (scent and taste, sweetness, softness) than the other components. The higher the absolute value of these coefficients, the more important the measured properties in the construction of the main component. Therefore, color is the most important component in the first factor, being oily and sweet are the most important components in the second and third factors, respectively. The product coordinates in PCA indicate the relevance of the parameters. For example, pastry and scent and taste were located in close proximity to each other, indicating a close connection between these parameters.

    Conclusion

    In sensory evaluation of food, principal component analysis provides a way to visualize the relationship between sample and sensory characteristics. In this study, in order to achieve a product withe a suitable structure in different amounts of 0.1, 0.2 and 0.3 gums concentrations were used as the low fat milky dessert, as a texture improver and fat replacer. In the production of samples, low fat milky dessert samples containing 0.3 Lallemantia native gum and 0.3 Cydonia Oblong native gum had the highest rate of sensory acceptance among the evaluators. Also, using principal component analysis, it was found that the overall acceptance of the samples had high correlation with color, softness and gel content. This study showed that Cydonia Oblonga and Lallemantia native gums could be used as a fat replacer and also as a dessert texture improver.

    Keywords: Milky dessert, Balangu Lallemantia native gum, Cydonia Oblong native gum, Principal component analysis, Hydrocolloid
  • Ali Motamedzadegan *, Saeed Mirarab Razi Pages 119-132
    Introduction

    Deep frying is commonly used in the food industry to produce a range of food products with high consumer acceptability, even though high fat contributes to obesity and cardiovascular diseases (Lumanlan et al 2019). When the food absorbs the fat, it may change the composition, texture, size, and shape of the food, resulting in loss of nutrients specifically vitamins. There is a growing interest to know the methods that could minimize the oil uptake and to reduce the fat content of fried food (Lumanlan et al 2019). Oil uptake is affected by oil quality, product and oil temperature, frying duration, initial moisture content of food ingredients, product shape and content, porosity of coating, and the method of frying (Khazaei et al., 2019). Since a high oil intake is linked to the medical risk of obesity, coronary heart disease, diabetes, hypertension and cancer, there is demand to develop products that absorb a smaller quantity of oil, leading to healthier fried foods. This has been a driving force in the food industry to develop novel products, machinery and food ingredients (Karimiet et al 2016). Using of gums to reduce the oil content is one of the simplest and most convenient methods which do not require variation in equipment design. Specifically, the hydrocolloid coatings are often known to reduce the oil uptake of fried foods. Basil seed gum (BSG) is a novel hydrocolloid extracted from Ocimum basilicum L. (Razi et al 2018), used in food product development as a gelling agent, thickener, edible film ingredient, fat replacer, and stabilizer (Razi et al 2019 a & b). Cress seed gum (CSG) (Lepidium sativum) belongs to the Brassicaceae family and is mostly cultivated in Iran, India, North America and some places in Europe. It contains a noticeable amount of D-galacturonic acid and D-glucuronic acid which makes CSG a polyelectrolyte (Gharanjig et al 2020). Nowadays, due to high-fat product problems, people are tended to produce and consume low-fat foods with desirable quality. The objective of our study was to investigate the influence of applying coatings based on BSG, CSG and a mixed solution of BSG and CSG as well as oil absorption, sensorial properties and textural characteristic of fried carrots.

    Material and methods

    BSG and CSG were purchased from Reyhan gum Persian Co., and carrot was prepared from local market. BSG and CSG solutions were prepared at concentrations of 0.5% and 1% (w/v) and 1% BSG-CSG mixture solution (1: 1 ratio). Carrots were washed and peeled and cut into 2cm. After-wards they were immediately immersed in hydrocolloid solutions at 20 °C for 2 min with a product weight to BSG and CSG solutions volume ratio of 1:3 (w/v). Frying was carried out in a controlled-temperature deep-fat fryer (Pars Khazar, Iran) filled with oil. Carrots were fried at 170 °C for 4 min. The coatings percent of samples was calculated based on adhered hydrocolloid to carrots surface. Moreover, absorbed and moisture were measured oil by using a solvent (n-hexane) and oven (105 °C), respectively. Besides, textural properties of fried carrots were measured by a texture analyzer (TA10-CT3, Brookfield, USA). Color parameters (L*, a* and b*) were measured by image j software. Sensorial properties of fried carrots were determined by a 5 point hedonic test and odor, taste, color, texture and total acceptance were measured. All experiments and measurements were carried out three times, and data were subjected to analysis of variance (ANOVA). Significant differences between means were determined by Duncan’s multiple range tests. p values less than 0.05 were considered statistically significant.

    Results and discussion

    The results showed that BSG, CSG, and BSG-CSG mixture at the concentration of 1% had the highest coating percentage. Coating percentage is the amount of hydrocolloid coating adhering to the surface of carrots during immersion in the suspension prior to frying. The lowest amount of coating percentage was observed in the control sample. The moisture content of samples was determined by calculating the weight loss of the fried carrots upon drying in a convection oven at 105 °C until constant weight was reached. The control sample had the lowest moisture content and the coating increased the moisture content of the samples. Specimens coated with 1% BSG and 1% BSG-CSG mixture had the highest moisture content (p < 0.05). The lowest amount of absorbed oil was obtained in samples coated with BSG. There was no significance difference between control sample and those coated by CSG in amount of adsorbed oil. The hardness of the coated samples with 1% BSG, 1% CSG and 1% BSG-CSG mixture was significantly lower than other samples (p < 0.05). It could be due to a higher amount of moisture content at these samples. The control sample had the highest hardness value (p < 0.05). The lowest amount of L* was observed at control sample while coated samples had a higher L* value. It was higher at samples coated with 1% BSG, 1% CSG and mixture of BSG-CSG at concentration of 1%. The control sample had the highest a* value and coating with CSG and BSG decreased amount of a*. B* was significantly higher at control sample (p < 0.05) and sample that was coated with 1% BSG-CSG mixture had the lowest b* value. There was no significant difference between coated samples and control samples in sensorial properties (taste, odor, color, texture and total acceptance).

    Conclusion

    Frying is a cooking process to achieve desirable sensory attributes such as flavor, texture and appearance. One of the most important quality changes during the process is mass transfer, mainly represented by water loss and oil uptake, and heat transfer. High oil content greatly increase the risk of adverse health consequences such as obesity, high blood pressure and coronary disease Based on the results, the sample coated with 1% BSG with the lowest oil uptake and highest moisture content and overall acceptance was selected as the best sample. The control sample that was coated with water had a high oil uptake and hardness while moisture content and L* was low. The sensorial properties of all samples had no significant difference.

    Keywords: Frying, Basil seed gum, Cress seed gum, Carrot
  • Farhad Khormali, Seyyed Hossein Hosseini Ghaboos *, Abolfazl Fadavi Pages 133-150
    Introduction

    Fruit fibre have better quality due to higher total and soluble fibre content, water and oil holding capacity and colonic fermentability, as well as lower phytic acid content and caloric value (Sharoba et al., 2013). In the fresh mass of the pumpkin (Cucurbita moschata), total carotenoid content, a major contributory factor in the high nutritional value of pumpkins, ranges from 2 to 10 mg/100 g, the content of vitamins C and E accounting for 9–10 mg/100 g and 1.03–1.06 mg/100 g, respectively (Hosseini Ghaboos et al., 2016; Nawirska et al., 2009). Pumpkin fruit is also a valuable source of other vitamins, e.g., vitamin A, B6, K, thiamine, and riboflavin, as well as minerals, e.g., potassium, phosphorus, magnesium, iron and selenium (Mirhosseini et al., 2015; Obradović et al., 2015). Since pumpkin is a valuable micronutrients source, dried pumpkin could be processed into powder for foods to increase fibers, vitamin A and mineral contents. In addition, pumpkin powder can be used in bakery products because of its highly-desirable flavour, sweetness and deep yellow-orange colour (Salehi, 2020). The influence of replacement of wheat flour with pumpkin powder (at five levels of 0, 2.5, 5.0 7.5 and 10 %) on textural properties and sensory qualities of biscuit was studied by Kulkarni and Joshi (2013). As the replacement level of wheat flour with pumpkin powder increased, the firmness and fracturability values were increased. Biscuits with more pumpkin powder had a more yellow colour than those with less pumpkin powder. According to the sensory evaluation results, biscuits containing 2.5 % dried pumpkin powder had the highest total acceptance score. The iron and β-carotene content of biscuits increased with increasing pumpkin powder levels. Spinach is a good source of minerals (Fe, Mn, Zn and Mg), vitamins (E, A, C, K, B1, B6 and B2), protein, fibers and antioxidants, making it a suitable ingredient to be used in the formulation of food products with high nutritional and biological values (Slavin and Lloyd, 2012). El-Sayed (2020) studied the effect of spinach nano-powder (0.5-2%) addition on the quality of ultra-filtered soft cheeses. The author demonstrated that by increasing of spinach powder concentration with retentate, the content of fibers, minerals, total phenolic content, and antioxidant activity of samples was enhanced. In this study, pumpkin and spinach powders were used to improve and enhance the quality of sponge cake due to their high nutritional value, fiber, β-carotene and minerals (calcium and iron).

    Material and methods

    At first, the pumpkin and spinach were dried and powdered in controlled conditions. Fresh pumpkins (Cucurbita moschata) were purchased from local market. The pumpkin slices with 5 mm thickness were dried in an oven (65°C). The dried pumpkins were milled, powdered and passed thru a 125 mesh screen (Hosseini Ghaboos et al., 2016). The ingredients used in the formula of sponge cakes were cake flour (100 g), sucrose (70 g), sunflower oil (60 g), fresh eggs (70 g), whey (4 g), baking powder (1.5 g), vanilla (0.5 g), water (40 g) and nonfat dry milk (20 g) powder. Sucrose and sunflower oil were poured into a bowl, and mixed for 10 min. Whole egg was added to the bowl, and then mixed for 4 min. The sifted cake flour, whey, baking powder, vanilla, water and nonfat dry milk powder was gradually poured into a bowl, and mixed for 3 min. Water was added to the bowl, and then mixed for 1 min. For each cake, 45 g of cake batter was poured into a cake pan and baked at 195°C for 25 min in a oven toaster. The cakes were allowed to cool for 20 min, and then were removed from the pans. The cooled cakes were packed in polypropylene bags at room temperature before physico-chemical and sensory evaluation analyses. The test sponge cake samples prepared with 0% (control), 5%, 10%, 20 and 30% replacement of cake flour with blend of pumpkin and spinach powder. The blend of pumpkin and spinach at concentrations of 0, 10, 20 and 30% were used in sponge cake formulation and the dough viscosity and physicochemical, color, texture and sensory properties of the product were studied. The texture profile analysis of sponge cake samples from the midsection of the cakes were performed using a texture analyzer (TA-XT Plus, Stable Micro Systems Ltd., Surrey, UK) with a 36 mm diameter cylindrical probe, 50% compressing and a test speed of 1.0 mm s−1 . The crust of cake samples was removed in cake texture determination. A double cycle was programmed and the texture profile was determined using Texture Expert 1.05 software (Stable Microsystems). Other parameters were defined as: pre-test speed 2.0 mm s−1, post-test speed 2.0 mm s−1 and trigger force 5 g. The texture parameters recorded were firmness, cohesiveness, springiness and resilience, and the texture parameter of cake was averaged from 3 replications. Statistical analysis was performed in factorial arrangement based on completely randomized design and comparing was performed at the average at 5% level using Duncan's multiple range test.

    Results and discussion

    With increasing percentage of pumpkin and spinach powder in sponge cake formulation showed that fiber, iron and calcium percentages of samples were increased from 1.60 to 10.04%, 9.78 to 50.93 ppm and 0.19 to 0.42, respectively and there was a significant difference between treatments (p < 0.05). Also, β-carotene, protein, moisture and density of cakes increased significantly with increasing percentage of powder replacement (p < 0.05). By increasing the percentage of substitution of powders in sponge cake formulation from 0 to 30%, the viscosity of cake batters at shear rate of 90 s-1 was significantly increased from 16.72 to 30.82 Pa.s (p < 0.05). According to the results of image processing, as the percentage of pumpkin and spinach powder increased in the formulation, the a* index decreased and became negative indicating that the samples became greener with increasing replacement percentage.

    Conclusion

    The firmness of cakes enriched with pumpkin and spinach powder was obtained in the first day and on the 14th day in the range of 2.071-5.427 N and 3.354-6.207 N, respectively. Based on the sensory evaluation results, the sample containing 20% pumpkin and spinach powder had the highest overall acceptance score.

    Keywords: β-carotene, Fiber, Image processing, Viscosity
  • Homa Alizadeh, Akram Pezeshky *, Babak Ghanbarzade, Shiva Ghiasifar Pages 151-164
    NEs are among the most important nano carrier systems, which are clear systems with droplet size within the range of 20-200 nm (Pezeshki et al., 2015 ).The particles smaller than the wavelength of the light are more resistant to the gravitational separation and therefore droplet aggregation compared with conventional emulsions (Pezeshki et al., 2017; Fathi et al., 2012). Also, as a promising drug delivery system they have been attracting global attention providing controlled release of active compounds (Ali et al., 2017). They are good delivery systems for lipid-soluble nutraceuticals which can be prepared by simple production methods and natural food ingredients (Hasani et al., 2015; Ozturk et al., 2015) Extensive researches have been done to use NEs for food enrichment and development of the functional foods containing bioactive components (Saberi et al., 2013, Ozturk et al., 2015, Komaiko and McClements, 2014). Formation and expansion of interfacial surface between the oil phase and the aqueous phase, requires energy input to the system and therefore these systems are thermodynamically unstable and due to various physicochemical phenomena over time they tend to separate to their constituent phases (Fathi et al., 2012; Rao & McClements, 2012; Jafari et al., 2008). This required energy could be provided by mechanical energy (high energy methods) or potential energy of its constituent components (low energy methods). Low energy methods are generally dependent to the interfacial phenomena at the boundary layer between oil and water phases and often it is more effective in small particle production compared with high energy methods ( Sagalowicz & Leser, 2008; Rao & McClements, 2012; Piorkowski & McClements, 2014). Spontaneous emulsification, one of the low energy methods in the preparation of oil in water NEs, depends on the production of very fine oil particles when an oil/hydrophilic surfactant mixture is added to the water (Pezeshki et al., 2017; Famian & Pezeshki, 2018). It is used as delivery system to encapsulate lipophilic nutraceutical components such as fat soluble vitamins Today, due to the reduction of fat in the diet and the loss of many compounds during various processes, the body is deficient in nutrients. Intrusion of hydrophobic food-drug compounds, such as various essential oils, into a variety of nanosatellite systems improves solubility and uptake into the human body and can be an effective way to enrich low-fat products. In this study, nanoamulsion containing 1: 1 ratio of subcutaneous, green-lemon oil essential oils by spontaneous formation method using spontaneous surfactant, non-hydrogen peroxide (Twin 80) and various oil phase carriers of Migliol 812, sesame oil and corn oil to surfactant ratio 15% emulsion (SER) was produced to achieve the best oil phase in the production of the optimal formulation of this nanomaterial with the smallest particle size. NE was produced using low energy spontaneous method by addition of the oil phase drops (solution of a hydrophilic nonionic surfactant (Tween 80) to the deionized water (Pezeshki et al., 2017). The ratio of surfactant to emulsion (SER) and surfactant to oil phase (SOR) was 15% and 150%, respectively. During the formation of the emulsion the mixture is continuously stirred by the magnetic stirrer (500 rpm at 25° C). By the time when the pouring of the oil phase was completed, the systems were given stirred for 40 minutes to reach equilibrium. With regard to the effect of temperature on the particle size of nanoemulsion, a magnetic stirrer equipped with a temperature sensor (Hiedolph, Germany) was used to maintain temperature during emulsion formation. Particle size and zeta potential measurements The particle size and particle size distribution of system was obtained with use of a particle size analyzer (Malvern, UK) at 25°C. Measurements were performed by laser light scattering. The samples were diluted twenty times before being placed in the device and the average particle size was expressed based on volume diameter (Hamishehkar et al., 2009) Transition electron microscopy (TEM) The morphology of the NEs was observed using TEM (KYKY-EM3200 with an accelerating voltage of 26 kV). The drying process of the samples was conducted at room temperature on the carbon-coated grids (Klang et al., 2012). Physical Stability The NE formulation’s variations regarding particle size and span value as well as its physical appearance during the sixty-day storage at 25°C (on days 1, 7, 14, 30, 45 and 60th day) were studied. Turbidity Measurements A turbidity method was applied to specify the optical properties of the colloidal dispersions. First, with use of acidic buffer solution (pH 3.0) samples were diluted to oil concentrations ranging from 0.03 to 0.15 wt. %. The turbidity of selected samples was measured at 600 nm with use of a UV–visible spectrophotometer. The slope of a linear plot of turbidity versus oil phase concentration represents the turbidity increment (Saberi et al., 2013). According to the results, the smallest droplet size of nanoamulsion produced with Miguel 812 (84.98 nm) carrier oil, especially dispersion (0.232), was distributed in the size of narrow and single-mode droplets. The temperature of 25 ℃ was stable. Images of the transmitting electron microscope also confirmed the particle size obtained from the particle measuring device. Transverse electron microscope images also confirmed the particle size obtained from the particle measuring device. The potential value of the optimal formulation zeta was obtained during a very small and near-zero maintenance period, and the increase in time did not show a significant effect on the change in the potential of the sample zeta. In general, using the Miguel oil phase, it is possible to produce nanomaterials containing all kinds of oily essential oils with the smallest size of droplets and stable, and then use it to enrich foods with a variety of oily essential oils.
    Keywords: Essential Oil, Cumin, Sour lemon, Migliol, Twin 80, Nanomulsion
  • Neda Abdolahi, Mehrnoosh Tadayoni * Pages 165-183
    Introduction

    One of the most critical factors affecting the health of any individual is nutrition. Patterns of food consumption play an important role in causing or preventing diseases. Functional Foods refer to products that, in addition to nutritional content, affect their consumers' health. Probiotic foods are considered to be viable products that contain sufficient quantities of probiotic microorganisms. Probiotics are live microorganisms (bacteria or yeast), which should be metabolically stable and remain active in the product; along the pathway before the digestion process, a large number of survivors reach the intestinal epithelial cells, colonize and leave beneficial effects on the host intestine, all of which can lead to increased host life. One of the types of probiotic bacteria is lactic acid bacteria. These bacteria can produce organic acids and bacteriocins and have antimicrobial activity (Tsai et al., 2010; Bonatsou et al., 2017). These microorganisms are easily adapted to fermentation conditions and can grow in high acid and salt conditions. These bacteria are non-pathogenic and capable of lowering pH through metabolic activities (Bonatsou et al., 2015). These lactic acid bacteria also reduce phenolic compounds and create a pleasing odor in the final product by creating volatile compounds (George-John &Nychas, 2017(. The selection of starter cultures depends on several aspects, such as type of studied medium, growth potential, acidifying capacity, salt and pH tolerance, probiotic potential, metabolic capacity. The microbial debittering property of the selected starter is fundamental, and this route could be an alternative to chemical debittering. Lactobacillus plantarum is one of the most common bacteria of the genus Lactobacillus. This gram-positive bacterium can hydrolyze gelatin and grow well at 15° C but cannot grow at 45 °C. Production of antimicrobial agents by Lactobacillus plantarum helps the species survive in the plant. Today, the use of these bacteria in various foods is remarkable because of their prominent properties. One of these critical food products is olive. Therefore, in this study, we investigated the effect of Lactobacillus plantarum lactate starter, salt concentration, and acetic acid percentage on chemical and microbial properties of olives over 90 days at 28 ° C.

    Material and methods

    To carry out this study, 1 kg of olive pots were filled with two treatments (8% Nacl+ 0.1% acetic acid) and (6% NaCl +0.3% acetic acid). Then, on the fifth day of the test, the Lactobacillus Plantarum was inoculated. Bacteria-free containers were used as controls. Chemical tests, including acidity, pH, salinity, and peroxide measurements, were performed by the national standard of Iran. Microbial tests, including yeast and mold measurements using Sabourod Dextrose chloramphenicol agar medium, lactic acid bacteria measurement using MRS agar medium, and Thermophilus Bacteria, were performed using Thermosidorescent Agar medium, and Mesophilic Bacteria was measured using Orange Broth Serum. All treatments had three replications. One-way and two-way ANOVA and T-test tests were used to determine the mean and level of significant differences between treatments and controls in SPSS 23 software.

    Results and discussion

    The results showed that the burden of bacteria in Lactobacillus plantarum and control were significantly increased with increasing maintenance time (p < 0.05). In all two treatments, the decrease in NaCl level was 6% and increased acetic acid to 0.3% higher growth of lactic acid bacteria and mesophilic (p < 0.05). However, changes in NaCl and acetic acid levels did not cause a significant difference in the levels of thermophilic bacteria and yeast and fungi(p>0.05). The lowest growth of thermophilic bacteria and the highest growth of mesophilic and yeast and fungi were measured in the control treatment (p < 0.05). The highest growth of lactic acid and mesophilic bacteria and the lowest fungi and yeast were measured in Lactobacillus plantarum bacterial treatment. The results showed that none of the treatments were allowed to pass through the specified bacterial limit. The sensory and pH characteristics of olives were not affected by acidity and NaCl in all two Lactobacillus plantarum and control (p < 0.05). Comparison between treatments showed that the control treatment had the lowest sensory specificity, and Lactobacillus plantarum had the highest sensory score of olive (p < 0.05). Lactobacillus plantarum had the lowest pH level in similar NaCl and acetic acid levels, and control treatment had the highest level of this parameter. Acidity influenced the acetic acid level from the day 45 maintenance between the two NaCl treatments of 8% + Acetic acid 0.1% and NaCl 6% + Acetic acid 0.3% had a significant difference, and the treatment of olive with Lactobacillus bacteria had the highest level, and control treatment had the lowest acidity. The highest salinity level was observed in the control treatment, and the lowest was in Lactobacillus plantarum. According to the Iranian National Standard, the salinity of processed olives was 5% by weight, which exceeded the permissible limit for NaCl 8% + Acetic acid 0.1% bacterial Lactobacillus plantarum and control. The amount of peroxide as the primary oxidation index in NaCl treatments was 6% + Acetic acid 0.3% higher than 8% + Acetic acid 0.1%. The maximum number of olive peroxide is 20 mm Eq /kg, and none of the treatments were passed from the designated range.

    Conclusion

    Based on the findings of this study, it can be concluded that the use of lactic acid bacteria in the production of various types of food can help improve its nutritional and health characteristics. Lactobacillus plantarum is a probiotic bacterium in olive resulted in reduced microbial load and increased storage time in olive.

    Keywords: lactic acid bacteria, Olive, Lactobacillus plantarum, Shelf life
  • Samad Bodbodak *, Boukaga Farmani, Mohammad Nejaatian Pages 185-197
    Introduction
    Pomegranate juice is classified in the group of clarified fruit juices. Therefore, clarification operation is necessary after the extraction process of pomegranate juice. Removal of most turbidity agents and colorants by the membrane process is possible without addition of chemicals. However, membrane fouling is an important subject in the clarification of fruit juices. The objective of the study was to evaluate the efficiency of ultrafiltration polymeric membrane for clarification of pomegranate juice under the different operating parameters (different pressures and temperatures)
    Materials and methods
    Pomegranate Malas variety (Punica granatum L.) was supplied from local market in Saveh and after transporting to laboratory, washed and juice was extracted by juicer. The cross-flow membrane pilot system with tubular ultrafiltration (UF) polymeric membrane (polyvinylidene difluoride (PVDF)) with kDa 20 MWCO was used. Clarification process was carried out at 2 levels of temperatures (20 and 30 ° C) and 3 levels of Transmembrane pressure (TMP) (1.5, 2 and 2.5 bar) for 45 min and the permeate flux was measured. Quality indices such as tannin retention rate, clarity, titratable acidity, total soluble solids, density, pH, apparent viscosity, phenolic compounds, total anthocyanin, decomposition constant, color intensity, browning index and amount of pectin in pomegranate juice were measured before and after membrane process. The efficiency indices of ultrafiltration process including permeability of pomegranate juice, percentage of reversible and irreversible fouling of the membrane and retention rate of the compounds were measured. Total resistance, intrinsic resistance of the membrane, concentration polarization resistance or reversible resistance and irreversible fouling resistance were calculated using the resistance-in-series model. In this research, the effect of process operating parameters including temperature and TMP on ultrafiltration process efficiency indices and quality attributes of pomegranate juice using factorial experiments in a completely randomized design using SAS software was analyzed.
    Results and discussion
    The results showed that the permeate-time curves were divided into 3 sections: I) The rapid decrease region of the permeate flux up to the 5th minute II) the slow decrease region of the permeate flux which begins from the 6th minute up to about 22-27th minute III) the constant flow area was from the 28th minute until the end of the operation. The rapid decrease in permeate flux could be attributed to the surface adsorption of colloidal particles such as pectins, tannins, polymeric colorants, and other polymeric materials present in pomegranate juice and the formation of concentration polarization layer. Increase of the pressure at 20 and 30 °C significantly increased the permeate flux (p <0.05). This was result of the increase in the driving force of the convective flow to the surface of the membrane. The experimental results indicated that increase of TMP from 1.5 to 2 and 2.5 bar at constant temperature of 20°C led to increase of the permeate flux in the steady state by 51.33 and 58.68%, respectively. The total resistance value decreased significantly with increase of the temperature from 20 to 30 ºC at different pressures. It could be attributed to the decrease of apparent viscosity and increase of the diffusion coefficient of the compounds from the cake layer into the retentate flow. Also, the total flux increased with increase of pressure despite rise of the resistance, because the rate of deposition of colloidal particles on the surface of the membrane was enhanced at high pressures. It resulted in more compaction of the deposited components on the surface of the membrane and formation of a thicker and denser cake layer with high resistance. The results showed that the effect of different pressures and temperatures on the intrinsic resistance of the membrane was significant and Rm significantly reduced with raising the temperature from 20 to 30 ºC (p <0.05). Also, increasing the pressure from 1.5 to 2.5 bar caused a significant increase in Rm. The highest contribution in the total resistance is related to the fouling resistance (Rrf + Rif), which indicates that the membrane fouling was severe. Rif had the lowest contribution in total resistance. Furthermore, Rif was increased with raising temperature. This is due to the higher penetration of particles into the membrane pores and blockage of the membrane pores at high temperatures. Raising temperature reduced the apparent viscosity and increased the diffusion coefficient of the compounds from the cake layer to the retentate flow and reduced the fouling. The main effects of pressure and temperature on reversible fouling were significant (p <0.05). With raising pressure and temperature, it was decreased and increased respectively. In all treatments, the value of reversible fouling was about 12-31%. The pomegranate juice pectin was reduced by 99% during the ultrafiltration membrane clarification process. Anthocyanin decomposition constant increased significantly with raising temperature from 20 to 30°C (p <0.05), due to the acceleration of the decomposition reactions and polymerization of anthocyanins. The retention rate of tannins increased with increasing temperature and pressure. It should be mentioned that raising pressure had higher effect on retention rate of tannins as compared with increasing the temperature. As the surface cake layer, as a secondary membrane, became denser and thicker, the permeability of tannin compounds decreased and its retention rate was increased.
    Conclusion
    Finally, it was found that clarification of pomegranate juice using ultrafiltration membrane, in all treatments decreased pomegranate juice pectin content about 99%. The treatments of 20°C- 2 bar and 30 °C- 2 bar had the lowest (4.25%) and the highest (15.315) anthocyanin retention value, respectively. The lowest (42.43%) and highest (50.93%) tannin retention values were observed at treatments of 20ºC- 1.5bar and 30ºC- 2 bar, respectively. It is also suggested that the organoleptic characteristics of the pomegranate juice should be evaluated in further works.
    Keywords: Pomegranate juice clarification, Permeate flux, Membrane Process, Separation of Impurities, membrane fouling