فهرست مطالب

Automotive Science and Engineering
Volume:9 Issue: 2, Spring 2019

  • تاریخ انتشار: 1398/03/11
  • تعداد عناوین: 6
|
  • Victor Ogbonna, Patrick Olayiwola*, Henry Mgbemere Pages 2934-2941

    In the current study, effect of varying Silicon Carbide particulate on the mechanical properties of Aluminium based alloy automobile brake disc component was investigated. The result of experimental investigation on mechanical properties of Silicon Carbide particle reinforced Aluminium Matrix was achieved for composite brake disc using universal tensile test machine, Rockwell hardness testing machine and numerical/theoretical model. The influence  of reinforced ratio of  5,  10, 15 20, and 25  weight  percentage  of  Silicon  Carbide particles on  mechanical properties was  examined. Aluminium Metal Matrix Composites containing, 5, 10, 15, 20, and 25   weight percentages of reinforcement Particles was obtained using Stir-Casting method. The result obtained showed that highest Yield Strength (350.64MPa), Modulus of Rigidity (6137.4MPa), and Hardness (76.5Kg/mm2) was obtained on 25wt%SiC (190μm) particle reinforcements.

    Keywords: Aluminium base alloy, Silicon Carbide, Hardness, Yield Strength, Modulus of Rigidity
  • Nouby Ghazaly*, K. A Abd El-Gwwad Pages 2942-2948

    The purpose of this paper is to examine the piston stress distribution using several thicknesses of the coating materials to achieve higher gasoline engine performance. First of all, finite element structure analysis is used to uncoated petrol piston made of aluminum alloy. Then, steel and cast iron piston materials are conducted and compared with the aluminum piston. After that, investigation of four coating materials namely, Yttria-stabilized Zirconia, Magnesia-stabilized zirconia, alumina, and mullite are studied for each piston materials. Next, influence of various thickness coating layers on the structure stresses of the top surfaces are examined. Comparison between simulated results for aluminum, steel and cast iron materials are reported. Moreover, the influences of different coating thickness on the Von Mises stresses of four coating materials are investigated. From the simulation results, it can report that the maximum Von Mises stresses and deformations for the piston materials are decreasing with increasing the coating thickness for Magnesia-stabilized zirconia, Yttria-stabilized Zirconia, Mullite and Alumina coated materials.

    Keywords: structure analysis, aluminum piston, MgZrO3, YTZ, Mullite, Alumina
  • Amirhasan Kakaee*, Mohammadreza Karami Pages 2949-2957

    In this study, modeling of a fuel jet which has been injected by high pressure into a low-pressure tank are investigated. Due to the initial conditions and the geometry of this case and similar cases (like CNG injectors in internal combustion engines (ICE)), the barrel shocks and Mach disk are observed. Hence a turbulence and transient flow will be expected with lots of shocks and waves. According to the increasing usage of this type of injectors in ICE, more studies should be conducted to find the most accurate and beneficial models for modeling this phenomenon. In order to find an accurate and beneficial turbulence model ,in this study, three Reynolds-averaged Navier–Stokes (RANS) turbulence models (SST k-ω, RNG and standard k ) and large eddy simulation (LES) turbulence model were compared by the fuel jet characteristics in three regions (outlet of the nozzle, at Mach disk and at the downstream of the flow). Although the LES model needs more time for each test, the results are more reliable and accurate. On the other hand, RANS turbulence models have lots of errors (more than 10 percent) especially for predicting the characteristics of fuel jet at Mach disk.

    Keywords: High-pressure injection, Turbulence models, Reynolds-averaged Navier-Stokes ( RANS), large eddy simulation (LES), Mach disk, Fuel jet
  • Morteza Montazeri*, Masoud Khasheinejad, Zeinab Pourbafarani Pages 2958-2965

    Hardware implementation of the Plug-in hybrid electric vehicles (PHEVs) control strategy is an important stage of the development of the vehicle electric control unit (ECU). This paper introduces Model-Based Design (MBD) approach for implementation of PHEV energy management. Based on this approach, implementation of the control algorithm on an electronic hardware is performed using automatic code generation. The advantages of the MBD in comparison with the traditional methods are the capability of eliminating the manual coding complexities as well as compiling problems and reducing the test duration. In this study, hardware implementation of a PHEV rule-based control strategy is accomplished using MBD method. Also, in order to increase the accuracy of the results of the implementation, the data packing method is used. In this method, by controlling the primer and end data of the data packet transferred between the electronic board and the computer system, the noisy data is prevented from entering. In addition, to verify the performance of the implemented control strategy, hardware-in-the-loop (HIL) simulation is used with the two frequency rates. The results show the effectiveness of the proposed approach in correct and rapid implantation procedure.

    Keywords: Model-based design (MBD), Implementation, Plug-in hybrid electric vehicle (PHEV), Hardware-in-the-loop (HIL)
  • Pouriya Rahimirad, Masoud Masih-Tehrani, Masoud Dahmardeh* Pages 2966-2976

    This paper investigates the effect of temperature on a hybrid energy storage system with various energy management systems. The hybrid energy storage system consists of a fuel cell, ultracapacitor and battery with associated DC/DC and DC/AC converters. The energy management strategies employed are the state machine control strategy, fuzzy frequency/logic decoupling strategy, minimization strategy of equivalent consumption (ECMS) and external energy maximization strategy (EEMS). Initially, a module of 3.3v 2.3Ah LiPo4 batteries consisting of 15 cells in series and 15 rows in parallel are studied without considering the temperature effect. In the next step, the studies are repeated considering the temperature variation effects. The current and SOC associated with the battery, the hydrogen consumption, and battery life are studied for each strategy. The results suggest that the errors associated with the battery life estimation, as well as the battery current are significant with and without considering the temperature effects with the values of 30% and 20%, respectively.

    Keywords: Battery life, Hybrid energy storage systems, Power distributions, Thermal model, energy management
  • Javad Sharifi*, Fereshte Vaezi Pages 2977-2990

    Modeling and identification of the system of Iranian cars is one of the most basic needs of automotive and consumer groups and has a broad role for safe driving. It has happened with speed increasing or changing of shift gear, effects on water temperature or the car's torque has been observed, but how much and how intensely and with what algorithm this effect is identifiable, can be modeled and controlled, because up to now an algorithm that can show these effects during driving has not existed that what reaction should be made by the vehicle when it occurs untimely. Identification of each automobile sector lonely has been considered in recent decades, and in some cases, some relationships have been investigated, but from a control point of view, the lack of comprehensive effects of all parts of a car on the other parts is to get an identification algorithm in the automotive industry, and it requires more in-depth studies, because the complexity of the behavior of different parts of the car has made many attempts not fully understandable. Hear it's supposed to control different parameters of Iranian vehicles by using LS estimation and fuzzy logic controller and the simulation is done in Matlab software by storing and validating data of a Dena vehicle through CAN network.

    Keywords: Fuzzy Control, LS Estimation, IKCO, CAN Communication Network, Automation