فهرست مطالب

Iranian Journal of Biotechnology
Volume:21 Issue: 4, Autumn 2023

  • تاریخ انتشار: 1402/07/09
  • تعداد عناوین: 9
|
  • Shirin Yousefian, Fazileh Esmaeili, Tahmineh Lohrasebi * Pages 2-29

    Context:

     The genus Mentha is one of the most aromatic and well-known members of the Lamiaceae family. A wide range of bioactive compounds has been reported in mints. Regarding the high economic importance of Mentha plants due to the presence of valuable metabolites, the demand for their products is growing exponentially. Therefore, to supply such demand, new strategies should be adopted to improve the yield and medicinal quality of the products.

    Evidence Acquisition: 

    The current review is written based on scientific literature obtained from online databases, including Google Scholar, PubMed, Scopus, and Web of Science regarding the characteristic features of some species of the genus Mentha, their distribution and cultivation, main uses and benefits, phytochemical composition, biotechnological approaches for the production of secondary metabolites, and strategies for enhanced production of mints secondary metabolites.

    Results

    In this article, we offer an overview of the key characteristics, natural compounds, biological properties, and medicinal uses of the genus Mentha. Current research describes biotechnological techniques such as in vitro culture methods for the production of high-value secondary metabolites. This review also highlights the strategies such as elicitation, genetic, and metabolic engineering to improve the secondary compounds production level in mint plants. Overall, it can be concluded that identifying the biosynthetic pathways, leading to the accumulation of pharmaceutically important bioactive compounds, has paved the way for developing highly productive mint plants with improved phytochemical profiles.

    Keywords: Mentha, Lamiaceae, bioactive compound, secondary metabolite
  • Aliakbar Haddad-Mashadrizeh *, Mahdi Mirahmadi, MohammadEhsan Taghavzadeh Yazdi, Nazanin Gholampour-Faroji, AhmadReza Bahrami, Alireza Zomorodipour, Maryam Moghadam Matin, Mohsen Qayoomian, Neda Saebnia Pages 31-46

    ntext: 

    Although for a long time, it was thought that intervening sequences (introns) were junk DNA without any function, their critical roles and the underlying molecular mechanisms in genome regulation have only recently come to light. Introns not only carry information for splicing, but they also play many supportive roles in gene regulation at different levels. They are supposed to function as useful tools in various biological processes, particularly in the diagnosis and treatment of diseases. Introns can contribute to numerous biological processes, including gene silencing, gene imprinting, transcription, mRNA metabolism, mRNA nuclear export, mRNA localization, mRNA surveillance, RNA editing, NMD, translation, protein stability, ribosome biogenesis, cell growth, embryonic development, apoptosis, molecular evolution, genome expansion, and proteome diversity through various mechanisms.

    Evidence Acquisition: 

    In order to fulfill the objectives of this study, the following databases were searched: Medline, Scopus, Web of Science, EBSCO, Open Access Journals, and Google Scholar. Only articles published in English were included.

    Results & Conclusions

    The intervening sequences of eukaryotic genes have critical functions in genome regulation, as well as in molecular evolution. Here, we summarize recent advances in our understanding of how introns influence genome regulation, as well as their effects on molecular evolution. Moreover, therapeutic strategies based on intron sequences are discussed. According to the obtained results, a thorough understanding of intron functional mechanisms could lead to new opportunities in disease diagnosis and therapies, as well as in biotechnology applications.

    Keywords: Gene regulation, intron, junk DNA, molecular evolution, therapeutic application
  • NASSERI SHERKO, Sara Parsa, Zakaria Vahabzadeh, Babak Baban, MohammadBagher Khadem-Erfan, Bahram Nikkhoo, Mohammad Rastegar Khosravi, Saman Bahrami, Fardin Fathi Pages 48-58
    Background

    Dental enamel formation is a complex process that is regulated by various genes. One such gene, Family With Sequence Similarity 83 Member H (Fam83h), has been identified as an essential factor for dental enamel formation. Additionally, Fam83h has been found to be potentially linked to the Wnt/β-catenin pathway.

    Objectives

    This study aimed to investigate the effects of the Fam83h knockout gene on mineralization and formation of teeth, along with mediators of the Wnt/β-catenin pathway as a development aspect in mice.

    Materials and Methods

    To confirm the Fam83h-KnockOut mice, both Sanger sequencing and Western blot methods were used. then used qPCR to measure the expression levels of genes related to tooth mineralization and formation of dental root, including Fam20a, Dspp, Dmp1, Enam, Ambn, Sppl2a, Mmp20, and Wnt/β-catenin pathway mediators, in both the Fam83h-Knockout and wild-type mice at 5, 11 and 18 days of age. also the expression level of Fgf10 and mediators of the Wnt/β-catenin pathway was measured in the skin of both Knockout and wild-type mice using qPCR. A histological assessment was then performed to further investigate the results.

    Results

    A significant reduction in the expression levels of Ambn, Mmp20, Dspp, and Fgf10 in the dental root of Fam83h-Knockout mice compared to their wild-type counterparts was demonstrated by our results, indicating potential disruptions in tooth development. Significant down-regulation of CK1a, CK1e, and β-catenin in the dental root of Fam83h-Knockout mice was associated with a reduction in mineralization and formation-related gene. Additionally, the skin analysis of Fam83h-Knockout mice revealed reduced levels of Fgf10, CK1a, CK1e, and β-catenin. Further histological assessment confirmed that the concurrent reduction of Fgf10 expression level and Wnt/β-catenin genes were associated with alterations in hair follicle maturation.

    Conclusions

    The concurrent reduction in the expression level of both Wnt/β-catenin mediators and mineralization-related genes, resulting in the disruption of dental mineralization and formation, was caused by the deficiency of Fam83h. Our findings suggest a cumulative effect and multi-factorial interplay between Fam83h, Wnt/Β-Catenin signaling, and dental mineralization-related genes subsequently, during the dental formation process.

    Keywords: Amelogenesis Imperfecta, CRISPR-Cas Systems, Family with sequence similarity 83 member H protein, Fgf10 protein, Wnt Signaling Pathway
  • WEL LAI, Qian Li, Mengbi Lin, Yalin Xie, Jie Zhang Pages 60-69
    Background

    Nude mouse has been widely used to study photoaging induced by long-term chronic UV exposure. Circular RNAs (circRNAs) have been previously identified in several diseases. However, the roles of circRNAs in photoaging and potential regulatory mechanisms remain unclear.

    Objectives

    To identify specific circRNAs differentially expressed in photoaged skin and investigate their potential role in aging.

    Materials and Methods

    In this study, we screened out the microarray data to profile the expression of circRNAs. The circRNAs were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway.

    Results

    36 circRNAs were identified to be differentially expressed between the UV group and control group (fold change > 1.5; P < 0.05), including 6 upregulated and 30 downregulated circRNAs. GO and KEGG biological pathway analyses indicated that the changes in circRNAs were associated with cancer, inflammation, oxidative stress, and metabolism.

    Conclusions

    This present study revealed a circRNAs expression profiling in vivo. These findings not only provide a new possibility to prevent the occurrence of photoaging but also have therapeutic values for photoaging and associated skin diseases.

    Keywords: CircularRNA, Mice, photoaging, Ultraviolet
  • Nafiseh Davati *, Abozar Ghorbani, Elham Ashrafi-Dehkordi, Thomas P. Karbanowicz Pages 71-82
    Background
    When Salmonella enterica serovar Typhimurium, a foodborne bacterium, is exposed to osmotic stress, cellular adaptations increase virulence severity and cellular survival.
    Objectives
    The aim of the gene network analysis of S. Typhimurium was to provide insights into the various interactions between the genes involved in cellular survival under low water activity (aw).
    Materials and Methods
    We performed a gene network analysis to identify the gene clusters and hub genes of S.Typhimurium using Cytoscape in three food samples subjected to aw stress after 72 hours.
    Results
    The identified hub genes of S. Typhimurium belonged to down-regulated genes and were related to translation, transcription, and ribosome structure in the food samples. The rpsB and Tig were identified as the most important of the hub genes. Enrichment analysis of the hub genes also revealed the importance of translation and cellular protein metabolic processes. Moreover, the biological process associated with organonitrogen metabolism in milk chocolate was identified. According to the KEGG pathway results of gene cluster analysis, cellular responses to stress were associated with RNA polymerase, ribosome, and oxidative phosphorylation. Genes encoding RNA polymerase activity, including rpoA, rpoB, and rpoZ, were also significantly identified in the KEGG pathways. The identified motifs of hub DEGs included EXPREG_00000850, EXPREG_00000b00, EXPREG_000008e0, and EXPREG_00000850.
    Conclusion
    Based on the results of the gene network analysis, the identified hub genes may contribute to adaptation to food compositions and be responsible for the development of low water stress tolerance in Salmonella. Among the food samples, the milk chocolate matrix leads to more adaptation pathways for S. Typhimurium survival, as more hub genes were down-regulated and more motifs were detected. The identified motifs were involved in carbohydrate metabolism, carbohydrate transport, electron transfer, and oxygen transfer.
    Keywords: Hub genes, Low water activity, Network analysis, Salmonella
  • Roya Behrooz, Dadkhoda Ghazanfari, Nahid Rastakhiz *, Enayatollah Sheikhhosseini Pages 84-94
    Background
    Organophosphate pesticides are one of the most extensively applied insecticides in agriculture. These insecticides persist in the environs and thereby cause severe pollution problems. Iron oxide polymer nanocomposites are wastewater remediation agents synthesized by various methods. When compared to chemical processes, green synthesis using plant extract is thought to be more cost- and environmentally-friendly. 
    Objectives
    This study aimed to evaluate the green synthesis of Fe3O4@β-Cyclodextrin (Fe3O4@β-CD) nanoparticles using Ferulago angulata (F. angulata) methanol extract. These nanoparticles are loaded on polylactic acid (PLA) nanofibrous nanocomposite along with Ferulago angulata extract (2, 4, and, 6wt %) to produce PLA/Fe3O4@β-CD/F. angulata extract nanofibrous nanocomposite as a new nano biosorbent. Furthermore, the antibacterial properties of this compound and its activity in diazinon removal have been evaluated.
    Materials and Methods
    Fe3O4@β-CD nanoparticles synthesis was performed via co-precipitation method using FeCl3.6H2O and FeCl2.4H2O and β-cyclodextrin, and Ferulago angulata extract. Then polylactic acid/ Fe3O4@β-CD / F. angulate.extract nanofibrous nanocomposite was prepared by the electrospinning method. Energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), vibrating sample magnetometer (VSM), and Fourier transform infrared spectroscopy (FTIR) were used to analyze the structure of the nanocomposite. The antibacterial activity of this nanocomposite against several fish and human bacterial pathogens, as well as its effectiveness in diazinon elimination, have been evaluated in the sections that follow. 
    Results
    The nanocomposite structure demonstrated that Fe3O4 nanoparticles were produced and put into the polylactic acid matrix with an average particle size of 40 nm. Furthermore, the results showed that this nanocomposite exhibited removal efficiency of diazinon over 80% after 120 minutes under pH=7 and 2.5 gr.L-1 nanocomposite concentration. Also, this structure showed above 70% antibacterial ability against Bacillus cereus, Staphylococcus epidermidis and 60% antibacterial ability against Streptococcus iniae and Yersinia ruckeri.
    Conclusion
    Fe3O4 nanocomposite synthesis may be accomplished in a delicate and efficient manner by using Ferulago angulata to produce Fe3O4@-CD nanoparticles. The stability of the nanoparticles was enhanced by combining Ferulago angulata extract with polylactic acid nanofibers to create an antibacterial homocomposition nanocomposite. This device may be used to remove and disinfect diazinon from aqueous media in an environmentally friendly manner.
    Keywords: Diazinon, Ferulago angulata, Iron Oxide Nanoparticles, Nanocomposite, Polylactic Acid
  • Ali Akbar Ghotbi-Ravandi, Zeinab Shariatmadari *, Hossein Riahi, Batool Hasani, Fatemeh Heidary, Majid Ghorbani Nohooji Pages 96-107
    Background
    Mentha piperita L. is one of the most important aromatic crops and is cultivated worldwide for essential oils (EOs). 
    Objectives
    The aim of the present study was to investigate the potential of two cyanobacteria, Anabaena vaginicola ISB42 and Nostoc spongiaeforme var. tenue ISB65, as biological-elicitors to improve the growth and essential oil production of M. piperita.
    Materials and Methods
    In this experiment, inoculation of M. piperita with cyanobacteria was performed by adding 1% cyanobacterial suspension to the soil of treated pots on the first time of planting and every 20 days thereafter. The experiment was performed in a randomized complete block design in an experimental greenhouse condition. After 90 days planting, the vegetative growth factors, the content of photosynthetic pigments, as well as the quantity and quality of EOs of treated and control plants were evaluated. Also, quantitative changes in the expression of some menthol biosynthesisrelated genes were investigated.
    Results
    Cyanobacterial application led to significant increases in M. piperita growth indices including root and shoot biomass, leaf number, leaf area, node number and ramification, as well as photosynthetic pigments content. The statistical analysis showed a 41-75 % increase in some of these growth indices, especially in Nostoc-treated plants. A. vaginicola and N. spongiaeforme var. tenue inoculation led to a 13% and 25% increase in the EOs content of M. piperita, respectively. The EOs components were also affected by cyanobacterial treatments. According to the statistical analysis, Nostoc-treated plants showed the highest amount of (-)-menthone and (-)-limonene, with a 2.36 and 1.87-fold increase compared to the control. A. vaginicola and N. spongiaeforme var. tenue inoculation also led to 40% and 98% increase in transcript level of (-)-limonene synthase gene, respectively. The expression of the (-)-menthone reductase gene, was also increased by 65% and 55% in response to A. vaginicola and N. spongiaeforme var. tenue application, respectively. 
    Conclusions
    Our data demonstrated that in addition to growth enhancement, these two heterocystous cyanobacteria improved the quantity and quality of EOs by up-regulating the key genes involved in the menthol biosynthetic pathway. Based on our results, these cyanobacteria can be considered valuable candidates in the formulation of low-cost and environmentally friendly biofertilizers in sustainable peppermint production
    Keywords: Anabaena vaginicola ISB42, Bioelicitor, Gene expression, Menthol, Nostoc spongiaeforme var. tenue ISB65, Peppermint
  • Yuanru Hao, Jianchao Hui, Tianyu Du, Xiangrui Ge, Meizhi Zhai * Pages 109-119
    Background
    Endophyte is one of the potential biocontrol agents for inhibiting plant pathogens. However, the mechanisms and characteristics involved in the inhibition of different phytopathogenic fungi by endophytes, especially walnut endophytes, are still largely unknown.
    Objectives
    The present study aimed to identify the walnut endophytic fungus LTL-G3 from a genetic point of view, assess the strain’s antifungal activity, and determine the bioactivities of the substances it produces against plant pathogens.
    Materials and Methods
    The homologous sequence of strain LTL-G3 was examined, and typical strains of the Trichoderma virens group were used to build NJ phylogenetic trees and analyze the taxonomic position of the strain. The biocontrol agent’s antagonistic potential for many plant pathogenic fungi. By using silica gel G chromatography, the active components of the strain were separated and purified. The active components were identified using GC-MS and NMR.
    Results
    The strain LTL-G3 was identified as Trichoderma virens. Its fermentation and secondary metabolite extracts had a broad spectrum and strong inhibitory effect on the spread of six plant pathogens (Botrytis cinerea, Fusarium graminearum,Gloeosporium fructigenum, Phytophthora capsici, Rhizoctonia solani, and Valsa mali) evaluated, of which, its inhibition rate against Valsa mali reached 76.6% (fermentation extract) and 100% (ethyl acetate and n-butanol extracts). On silica gel G chromatography, bioactive compounds were divided into 6 fractions and 7 sub-fractions. Fr.2-2 was the sub-fraction that showed the greatest inhibitory against V. mali, as an inhibition percentage of 89.36% in 1 mg. mL-1. Fifteen key inhibitory chemicals identified using GC-MS. By examining the NMR data, the chemical make-up of the precipitated white solid was identified. The inhibition rate against V. mali increased by over 95% at a dosage of 1 mg. mL-1, indicating a significant linear association between compound A and that rate.
    Conclusions
    The strain LTL-G3 can be applied as an efficient biological control agent against V. mali, and its highly inhibitive secondary metabolites provide the mechanism for this action.
    Keywords: Antifungal activity, bioactive substances, Phytopathogens, Valsa mali
  • Sara Taghavi, Effat Abbasi Montazeri *, Roya Zekavati, Laleh Roomiani, Parvaneh Saffarian Pages 121-132
    Background
    The unique ecosystem of the Persian Gulf has made it a rich source of natural antimicrobial compounds produced by various microorganisms, especially bacteria, which can be used in the treatment of infectious diseases, especially those of drug-resistant microbes.
    Objectives
    This study aimed to identify antimicrobial compounds in the bacteria isolated from the northern region of the Persian Gulf in Abadan (Chavibdeh port), Iran, for the first time. 
    Materials and Methods
    Sampling was performed in the fall on November 15, 2019, from 10 different stations (water and sediment samples). The secondary metabolites of all isolates were extracted, and their antimicrobial effects were investigated. 16S ribosomal ribonucleic acid sequencing was used for the identification of the strains that showed the best inhibition against selected pathogens, and growth conditions were optimized for them. A fermentation medium in a volume of 5000 mL was prepared to produce the antimicrobial compound by the superior strain. The extracted antimicrobial compounds were identified using the gas chromatography-mass spectrometry technique. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined for the superior strain. The effects of salinity, pH, and temperature on the production of antimicrobial compounds were determined by measuring the inhibitory region (mm) of methicillin-resistant Staphylococcus aureus (MRSA).
    Results
    Four new strains with antimicrobial properties (i.e., Halomonas sp. strain Persiangulf TA1, Bacillus aquimarisstrain Persiangulf TA2, Salinicoccus roseus strain Persiangulf TA4, and Exiguobacterium profundum strain Persiangulf TA9) were identified. The optimum growth temperatures were determined at 37-30, 37, and 40 °C for TA1 and TA2, TA4, and TA9 strains, respectively. The optimum pH values for the four strains were 7, 6-7, 7.5, and 6.5-7.5, respectively. The optimal salt concentrations for the four strains were 15%, 2.5-5%, 7.5%, and 5%, respectively. The ethyl acetate extract of strain Persiangulf TA2 showed extensive antimicrobial activity against human pathogens (75%) and MRSA. The most abundant compound identified in TA2 extract was the new compound 4-fluoro-2-trifluoromethyl imidazole. The MBC and MIC for the ethyl acetate extract of strain TA2 were 20 and 5 mg. mL-1 (Staphylococcus aureus), 40 and 20 mg. mL-1(MRSA, Escherichia coli, and Enterococcus faecalis), 40 and 10 mg. mL-1 Acinetobacter baumannii), and 80 and 40 mg. mL-1 (Staphylococcus epidermidis, Shigella sp., Bacillus cereus, and Klebsiella pneumoniae), respectively. The optimal conditions for antibiotic production by TA2 strain were 5% salt concentration, pH of 7, and temperature of 35 °C. 
    Conclusion
    Newly detected natural compounds in TA2 strain due to superior antimicrobial activity even against MRSA strain can be clinically valuable in pharmacy and treatment.
    Keywords: Antimicrobial, Bacillus aquimaris, Imidazole, MRSA, Persian Gulf, GC-MS