فهرست مطالب

مجله پژوهش آب ایران
پیاپی 51 (زمستان 1402)

  • تاریخ انتشار: 1402/11/01
  • تعداد عناوین: 10
|
  • مجتبی حسن پور، حسین خزیمه نژاد*، ابوالفضل اکبرپور صفحات 1-10

    از مشکلات پیش رو روش های تغذیه مصنوعی مناطق کویری می توان به بارش کم، منابع آبی محدود، دمای بالا و تبخیر زیاد، آورد رسوب بالا به علت پوشش گیاهی فقیر و غیره اشاره نمود. روش های تغذیه مصنوعی در این مناطق باید به گونه ای طراحی گردد که حداکثر بهره وری را از منابع آب موجود داشته باشد. در این پژوهش سعی شده است با ارائه یک روش جدید تغذیه مصنوعی متناسب با مناطق کویری، مشکلات فوق الذکر کاهش یابد. برای طراحی یک روش مناسب تغذیه مصنوعی نیاز به اطلاعات کافی از نحوه توزیع جریان آب در خاک می باشد. از طرفی پژوهش در مورد نحوه توزیع جریان آب در محیط متخلخل بدون مدل سازی شرایط میدانی، وقت گیر و هزینه بر است. در پژوهش حاضر به موضوع تعیین ظرفیت نفوذ در محیط غیراشباع با استفاده از تلفیق ترانشه نفوذ و لوله تراوا در محیط آزمایشگاهی پرداخته شد. برای این منظور مدل فیزیکی ساخته شد که در آن آب از طریق لوله تراوا و ترانشه به محیط غیراشباع تزریق گردید. دبی ورودی به مدل فیزیکی شامل 5 دبی 1، 5/1، 2، 5/2 و 3 لیتر در دقیقه تنظیم گردید. با شروع آزمایش که با دبی های ذکرشده وارد مدل فیزیکی شد، هر 5 دقیقه مقدار پیشرفت جبهه رطوبتی مشخص گردید. این عمل تا زمان رسیدن جبهه رطوبتی به سطح ایستابی ادامه یافت. همزمان با خارج شدن آب از مدل فیزیکی، دبی های خروجی هر 5 دقیقه اندازه گیری شد. بیشترین میزان ظرفیت نفوذ مدل فیزیکی، 049/2 لیتر در دقیقه تعیین شد. عملکرد مدل فیزیکی بر اساسV_out در مدت زمان مدت آزمایش در دو حالت مورد بررسی گرفت. بهترین عملکرد مدل فیزیکی به دبی 2 لیتر در دقیقه مربوط شد که نزدیک ترین دبی به دبی متناسب با ظرفیت نفوذ مدل فیزیکی است. نتایج نشان داد عملکرد در دبی 2 لیتر در دقیقه در حالتی که V_out نسبت به V_(out max)سنجیده شد (آب ورودی به مدل فیزیکی کمتر از ظرفیت نفوذ مدل فیزیکی)، 96 درصد و در حالتی که V_out نسبت به V_in مدنظر قرار گرفت (دبی آب ورودی به مدل فیزیکی بیشتر از ظرفیت نفوذ مدل فیزیکی)، عملکرد آن 98 درصد تعیین گردید. در روش تغذیه مصنوعی ارائه شده نیز بایستی دبی ورودی از طریق لوله تراوا متناسب با ظرفیت نفوذ ترانشه طراحی شود تا از بیشینه ظرفیت ترانشه استفاده شده و هدررفت آب به کمینه برسد.

    کلیدواژگان: آب زیرزمینی، تغذیه مصنوعی، جبهه رطوبتی، مدل فیزیکی
  • مهدی مکاری*، امیرحسین قادری، جواد علایی صفحات 11-21

    تعیین بهترین تابع تولید آب- شوری- عملکرد می تواند مدیریت مصرف آب کشاورزی را در مناطقی که با کمبود منابع آبی مواجه هستند، بهبود بخشد. به این منظور پژوهشی گلخانه ای به صورت فاکتوریل و در قالب طرح کاملا تصادفی با دو عامل شوری و سطح آبیاری در سه تکرار در محل گلخانه تحقیقاتی مرکز آموزش عالی کاشمر انجام شد. تیمارهای آزمایش شامل چهار سطح شوری آب آبیاری: (آب غیر شور) 7/0= S1، 4= S2، 8= S3 و 12= S4 دسی زیمنس بر متر و سه سطح میزان آب آبیاری: آبیاری کامل (تامین 100% نیاز آبی گیاه)= W1، W1 75/0= W2 و W1 5/0= W3 در یک خاک شنی لومی با جرم مخصوص ظاهری 41/1 گرم بر سانتی مترمکعب اعمال شدند. به منظور تعیین بهترین تابع تولید آب- شوری- عملکرد دانه کاملینا از توابع خطی، درجه دوم، کاب داگلاس و نمایی استفاده گردید. نتایج نشان داد که بهترین تابع تولید برای پیش بینی عملکرد دانه کاملینا در گلخانه و در شرایط کاشت گلدانی، تابع درجه دوم بود. شاخص های تولید نهایی (MP) و نسبت نهایی نرخ فنی (MRTS) عملکرد دانه نسبت به دو عامل کمیت و کیفیت آب آبیاری نشان دادند که با افزایش یک سانتی متر عمق آب و با فرض ثابت ماندن شوری آب آبیاری، عملکرد دانه کاملینا به اندازه 8/56 کیلوگرم در هکتار افزایش می یابد. هم چنین با توجه به شاخص تولید نهایی کاملینا نسبت به شوری آب آبیاری (MPECw) مشخص می شود که به ازای یک واحد افزایش شوری آب آبیاری با فرض ثابت ماندن عمق آب آبیاری، میزان عملکرد دانه کاملینا به اندازه 7/38 کیلوگرم در هکتار کاهش می یابد. با توجه به یافته-های این پژوهش می توان گفت که اعمال 70 میلی متر عمق آب آبیاری در آب های با شوری کم تر از چهار دسی زیمنس بر متر امکان رسیدن به عملکرد دانه مطلوب کاملینا در گلخانه و در شرایط کاشت گلدانی را در شهرستان کاشمر فراهم می نماید. البته در شرایط مزرعه با توجه به مصرف آب بیش تر گیاه (حدود 300 میلی متر) و طولانی تر بودن طول دوره ی رشد گیاه نسبت به شرایط کاشت گلدانی و گلخانه، ضرایب توابع تولید پیشنهادی در این مطالعه قابل استفاده نخواهند بود و لازم است که مطالعات تکمیلی در زمینه ی تعیین بهترین تابع تولید آب-شوری-عملکرد کاملینا در شرایط مزرعه نیز انجام پذیرد.

    کلیدواژگان: تنش شوری، تنش خشکی، کارایی مصرف آب، تبخیر و تعرق
  • مهدی رحمانی، سید حبیب موسوی جهرمی*، حسین حسن پور درویشی صفحات 23-30

    طبق رتبه بندی انستیتوی جهانی منابع، ایران با رتبه 14 استرس آبی در جهان، در بین 20 کشوری که بالاترین استرس منابع آبی را در جهان دارند، قرار دارد. روند فعلی برداشت از منابع آب زیرزمینی در ایران یک روند ناپایدار است و ادامه آن آسیب های جبران ناپذیر جدی بر کمیت و کیفیت آبخوان ها خواهد زد. در میان رویکردهای مدیریت پایدار منابع آب، همبست آب-غذا-انرژی مقدمات لازم جهت مدیریت پایدار منابع محدود موجود را به صورت یکپارچه فراهم می آورد. پژوهش حاضر به تحلیل دینامیکی سیاست های مدیریت پایدار منابع آب زیرزمینی بر مبنای همبست آب-غذا-انرژی پرداخته و راهکارهای مدیریت پایدار منابع آب زیرمینی را با توجه به روند تغییرات جمعیت، رشد اقتصادی و توسعه منابع انرژی تجدیدپذیر، مورد تجزیه و تحلیل قرار داده است. برای این منظور مدل پویایی سیستم با استفاده از داده های استان البرز طراحی شد. با توجه به نتایج تحلیل حساسیت، سناریوهای بهبود امنیت منابع آب زیرزمینی شامل: سناریو بهره برداری بهینه منابع تامین آب شامل سیاست تغذیه مصنوعی آبخوان ها: سیاست مسدود کردن چاه های غیرمجاز و کنترل برداشت های غیرمجاز و سیاست احداث و بهره برداری سامانه های ذخیره سازی و استحصال آب باران و پساب فاضلاب خاکستری و استفاده مجدد، سناریو مدیریت تقاضای آب کشاورزی شامل سیاست های سیاست توسعه سیستم های آبیاری، سیاست ترویج الگوی کشت مناسب با شرایط اقلیمی و توان اکولوژیکی و سیاست کاهش ضایعات کشاورزی در طول دوره تولید و سیاست توسعه عملکرد محصولات کشاورزی و توسعه کشت مکانیزه و سناریو مدیریت تقاضای انرژی الکتریکی شامل سیاست های سیاست بهینه سازی مصرف و کاهش اتلاف انرژی الکتریکی، سیاست احداث نیروگاه بازیافت حرارت از فرآیندهای صنعتی، سیاست بهره برداری از پتانسیل انرژی تجدیدپذیر خورشیدی طراحی نتایج ارزیابی گردید. یافته های مدل دینامیکی نشان داد سیاست ترکیبی به عنوان بهترین راهکارهای امنیت منابع آب زیرزمینی در راستای مدیریت پایدار منابع آب خواد بود.

    کلیدواژگان: مدیریت پایدار منابع آب زیرزمینی، امنیت منابع، همبست آب-غذا-انرژی، تحلیل دینامیکی سیاست ها
  • مهدی دستورانی*، فاطمه شیرزادی صفحات 31-39

    حرکت اولیه رسوبات بستر یک مولفه مهم برای تحقیقات مختلف از قبیل طراحی آبراهه های پایدار، مدیریت رودخانه، انتقال رسوب و جلوگیری از رسوب گذاری می باشد. شروع حرکت ذرات رسوبی را اصطلاحا آستانه حرکت و شرایطی که در آن ذرات در آستانه حرکت قرار می گیرند را شرایط آستانه یا بحرانی گویند. در جریان های با سرعت پایین، ذرات بستر هیچ گونه حرکتی نداشته و در محل خود ثابت هستند ولی با افزایش سرعت جریان ذرات بستر شروع به حرکت می کنند این حرکت ابتدا به صورت بالا و پایین آمدن ذره بدون انتقال است ولی به تدریج حرکت ذرات به طرف پایین دست شروع می شود. به نظر می‏ رسد که نمودار شیلدز نقطه مرجع تمامی تحقیقات انجام شده در زمینه انتقال رسوب باشد. به دلیل آن که در زمینه تاثیر دما بر روی نمودار شیلدز تحقیقاتی انجام نگرفته است، پژوهش حاضر با هدف بررسی آزمایشگاهی آستانه حرکت رسوب با استفاده از تاثیر دما بر پارامتر شیلدز و تنش برشی در یک مدل آزمایشگاهی با سه شیب 005/0، 01/0 و 05/0، در چهار دمای 8، 12، 20، 40 درجه سانتی گراد و سه دبی انجام گرفت. در این پژوهش با استفاده از مدل فیزیکی و تجزیه و تحلیل آنالیز ابعادی شرایط آستانه حرکت در کانال های روباز با مقطع مستطیلی بررسی گردید. نتایج نشان داد با افزایش زبری نسبی (ds/y) بدون درنظر گرفتن متغیر دما، عدد پایداری ذره در آستانه حرکت (SN) کاهش می یابد و اثرگذاری شیب بر این دو پارامتر محسوس نیست. همچنین در شرایط شیب و زبری نسبی (ds/y) ثابت، با افزایش دما، از مقدار پایداری ذره در آستانه حرکت (SN) کاسته می شود. تغییرات عدد پایداری ذره در آستانه حرکت (SN) نسبت به دما، روند صعودی دارد و با افزایش دما، به عدد پایداری ذره در آستانه حرکت (SN) افزوده می شود. علاوه بر این، تغییرات پارامتر زبری نسبی (ds/y) نسبت به دما، با روندی نزولی همراه است و با افزایش دما، پارامتر زبری نسبی (ds/y) کاهش می یابد. افزون بر این با افزایش شیب، پارامتر پایداری ذره کاهش می یابد.

    کلیدواژگان: آستانه حرکت، پایداری ذره، زبری نسبی، شیب
  • حسین باقری*، حمید زارع ابیانه، عزیزالله ایزدی، حسن باقری صفحات 41-49

    بررسی آزمایشگاهی انتقال و سرنوشت مواد درون خاک به جهت اثرگذاری مستقیم بر چرخه حیات و شبیه سازی رفتار آن ها به منظور آینده نگری در خصوص عواقب آن ها، ثبات محیط زیست و سلامت محصولات کشاورزی و منابع آب ضروری است. هدف مطالعه حاضر شبیه سازی انتقال ماده واکنشی سدیم در خاک طبیعی و خاک دارای ورمی کمپوست تحت شرایط اشباع و نزدیک به اشباع با سه مدل تعادلی، جذب تک مکانی و جذب دو مکانی است. جهت انجام آزمایش، دو نمونه خاک طبیعی و خاک دارای ورمی کمپوست به میزان 45/1 درصد وزنی در ستون هایی به طول و قطر 10 و 95/5 سانتی متر ریخته شده و بعد از آبشویی جریانی حاوی 1 میلی مول پتاسیم نیترات و 435/0 میلی مول سدیم کلراید بر لیتر به مدت 270 دقیقه در شرایط اشباع و نزدیک اشباع تزریق و سپس با آب مقطر مجددا در همان شرایط رطوبتی آبشویی گردید. سپس منحنی های رخنه سدیم با مدل های تعادلی، جذب تک مکانی و دو مکانی در محیط Hydrus-1D شبیه سازی شده تا ضرایب جذب سدیم برآورد گردد. نتایج شبیه سازی نشان داد که متوسط مقادیر RMSE برای مدل های تعادلی، جذب تک مکانی و جذب دو مکانی به ترتیب 125/0، 021/0 و 015/0 بوده که مبین دقت بالاتر مدل جذب دو مکانی و دقت پایین مدل تعادلی است. مقادیر کسر مکان های جذبی در کلیه آزمایش ها کمتر از 5/0 بوده که مبین جنبشی بودن فرآیند جذب سدیم درون ماتریکس خاک است. غیراشباع شدن خاک و کاربرد ورمی کمپوست مقادیر کسر F را به ترتیب 5/85 و 5/66 درصد کاهش داده و موجب وابستگی بیشتر آزمایش به زمان شد. همچنین، ضرایب توزیع سدیم (KD) با کاربرد ورمی کمپوست و غیراشباع شدن خاک به ترتیب 4/3 و 6/12 درصد افزایش یافت که نشان دهنده افزایش توان هیدرولیکی و فیزیکی خاک در نگهداشت مواد محلول درون خاک است. نتایج آنالیز حساسیت نشان داد که ضرایب KD و α به ترتیب بیشترین و کمترین تاثیر را در شبیه سازی منحنی رخنه داشتند.

    کلیدواژگان: مدل تعادلی، مدل جذب تک مکانی، مدل جذب دو مکانی، ضریب توزیع، کسر مکان های جذبی
  • چنور عبدی، ستار زندسلیمی، حمید زارع ابیانه* صفحات 51-61

    ارزیابی عملکرد بخش جدایی ناپذیر طرح های آبیاری است. در این تحقیق عملکرد شبکه آبیاری پایاب سد گاوشان در منطقه کامیاران استان کردستان با استفاده از برخی شاخص های مقایسه ای ارائه شده توسط موسسه بین المللی مدیریت آب (IWMI) ارزیابی گردید. این شاخص ها نیاز به داده هایی دارند که در دسترس بوده و به راحتی نیز تحلیل می شوند. داده های مورد نیاز شامل عملکرد محصول، سطح آبیاری شده گیاه در فصل زراعی، نیاز آبی گیاهان، الگوی کشت و اطلاعات مربوط به میزان آب تحویلی به شبکه می باشد. نتایج عملکرد شبکه مورد مطالعه با توجه به بهره وری از آب و زمین نشان می دهد که به طور کلی عملکرد وضعیت فعلی شبکه مطلوب می باشد. تجزیه و تحلیل عملکرد مصرف آب نشان داد که مقادیر تامین آب نسبی گیاه و تامین آب آبیاری نسبی گیاه به ترتیب 1.3 و 0.94محاسبه شد که بیان گر آن است که آب مورد نیاز شبکه به میزان 0.06 کمتر تامین می گردد. عملکرد فیزیکی، از نظر شدت کشت و نسبت آبیاری خوب ارزیابی شد. ظرفیت آبرسانی کانال اصلی شبکه گاوشان برابر 0.97 بوده که می توان گفت نیاز آبی گیاه برای الگوی کشت فعلی به صورت تقریبی تامین می گردد اما در صورت تغییر الگوی کشت می بایست جهت جلوگیری از هر گونه تنش آبی، ابتدا ظرفیت کانال آبرسانی برای تامین نیاز آبی الگوی کشت جدید در ماه حداکثر نیاز آبی گیاه بررسی گردد.

    کلیدواژگان: ارزیابی عملکرد، بهره وری، شاخص های مقایسه ای، طرح آبیاری
  • پریسا کریمی، محمدحسن بیگلوئی*، امیر صحرارو، هدایت زکی زاده، باب اله فرجی صفحات 63-72

    به منظور بررسی اثر تعداد دور آبیاری و نیترات آمونیوم بر عملکرد و شاخص های بهره وری فیزیکی و اقتصادی آب گیاه داروئی مامیران (Chelidonium majus L.)، آزمایشی به صورت فاکتوریل در قالب طرح کاملا تصادفی در سه تکرار در گلخانه ی تحقیقاتی دانشکده علوم کشاورزی دانشگاه گیلان در سال 1396 اجرا گردید. فاکتورها شامل دور آبیاری در سه سطح (4، 8 و 12 روز) به ترتیب به صورت I2، I1 و I3 و کود نیتروژن بر پایه نیترات آمونیوم در پنج سطح (0، 45، 60، 75 و 95 کیلوگرم در هکتار) به ترتیب به صورت N0، N45، N60، N75 و N95 بودند. نتایج نشان داد که بیشترین وزن تر بوته با 92/92 گرم در بوته در دور آبیاری 8 روز با سطح کود 95 کیلوگرم بر هکتار بدست آمد. همچنین بیشترین شاخص های بهره وری فیزیکی و اقتصادی آب مبتنی بر سود ناخالص و سود خالص بر پایه وزن تر کل بوته به ترتیب با 65/8 کیلوگرم بر مترمکعب و 34639329 و 17319665 ریال بر مترمکعب در تیمار دور آبیاری 8 روز با سطح کود 95 کیلوگرم بر هکتار بدست آمد. بنابراین تیمار دور آبیاری I2 با سطح کود N95 مناسب ترین گزینه از نظر عملکرد و شاخص های بهره وری آب برای تولید گیاه داروئی مامیران کبیر در شرایط گلخانه می باشد.

    کلیدواژگان: آب مصرفی، بهره وری آب، سود خالص، سود ناخالص به ازای واحد حجم آب، وزن تر کل بوته
  • سارا احمدی عدلی*، اکرم عباسپور، علی حسین زاده دلیر، جواد پارسا صفحات 73-82

    بهبود شرایط زیستمحیطی رودخانه ها یکی از جنبه های اصلی مهندسی رودخانه در دهه های گذشته بوده است. سازه های زیست محیطی عموما با هدف کنترل بستر رودخانه ها، تثبیت سواحل و بهبود شرایط اکوسیستم رودخانه ها طراحی و اجرا می شوند. صفحات متصل به ساحل یکی از انواع سازه های زیست محیطی می باشند که در تحقیق حاضر تاثیر حالت های مختلف هندسی و نفوذپذیری این سازه ها بر الگوی جریان متلاطم مورد بررسی قرار گرفته است. با استفاده از نرم افزار فلوئنت و مدل گرداب های بزرگ، میدان جریان حول صفحات متصل به ساحل در یک کانال مستقیم شبیه سازی شده است. دقت و قابلیت مدل گرداب های بزرگ، با مقایسه مقادیر پروفیل سطح آب به دست آمده از مدل عددی با نتایج آزمایشگاهی، مورد ارزیابی قرار گرفته است. نتایج برآیند سرعت حول صفحات متصل به ساحل، نشان دهنده وجود دو ناحیه در اطراف این سازه ها می باشد که ناشی از اثرات موضعی صفحات متصل به ساحل و تنگ شدگی کانال تشکیل شده اند. پارامترهایی هم چون سرعت دماغه، سرعت بیشینه و زاویه انحراف جریان تحت تاثیر اندرکنش گردابه های مختلف، شرایط هندسی و ساختاری صفحات متصل به ساحل دچار تغییر می شوند. به طور کلی با افزایش نفوذپذیری، صفحات متصل به ساحل تاثیر قابل توجهی بر الگوی جریان ندارند. هم چنین با افزایش نفوذپذیری، بیشینه تنش برشی بستر به محور مرکزی کانال منتقل می شود.

    کلیدواژگان: سازه های زیست محیطی، فلوئنت، مدل گرداب های بزرگ، نفوذپذیری، هندسه
  • سیما صمدی قره ورن، اکرم عباسپور*، داود فرسادی زاده، علی حسین زاده دلیر صفحات 83-92

      پوشش گیاهی از جمله زبری های طبیعی موجود در بستر رودخانه ها و کانال ها به شمار می روند که تاثیر زیادی بر روی مشخصات هیدرولیکی جریان دارند و برای انجام بهتر اقدامات مدیریتی رودخانه ها باید این تاثیر شناخته شود. در مطالعه حاضر، تاثیر وجود پوشش گیاهی سخت مستغرق بر روی سرعت جریان، به صورت آزمایشگاهی بررسی شده است. در تحقیق حاضر، برخلاف بسیاری از مطالعات پیشین، توزیع ارتفاعی گیاهان در بستر کانال یکنواخت نبوده و به صورت کاملا تصادفی می باشد. جریان در شرایط مورد مطالعه دارای سه لایه است: لایه فوقانی بدون پوشش گیاهی، لایه میانی دارای پوشش گیاهی و لایه پایین دارای پوشش گیاهی. لایه فوقانی که از تاج بلندترین گیاه شروع شده و تا سطح آزاد جریان امتداد می یابد دارای توزیع سرعت لگاریتمی است که رابطه مربوطه استخراج شده است. برای دو لایه میانی و پایینی که درون پوشش گیاهی هستند، با استفاده از معادله مومنتم، روابط سرعت ارائه شده است. پروفیل سرعت دارای دو نقطه عطف است که موقعیت آن ها به تراکم پوشش گیاهی بستگی دارد. بررسی تاثیر پارامترهای بی بعد مختلف بر سرعت جریان نشان می دهد که افزایش دبی جریان که باعث افزایش عدد رینولدز و عدد فرود می گردد، تاثیری بر موقعیت نقاط عطف موجود در پروفیل های سرعت ندارد. با افزایش تراکم پوشش گیاهی، سرعت جریان در لایه های گیاهی و لایه بالایی به ترتیب کاهش و افزایش می یابد و در نتیجه انحنای منحنی افزایش می یابد و موقعیت نقاط عطف کمی به پایین جابجا شده است. پارامتر دیگر مورد مطالعه، استغراق پوشش گیاهی است که با رشد میزان استغراق گیاهان، سرعت در هر سه لایه جریان کاهش می یابد. افزایش 30 درصدی میزان استغراق، سرعت جریان را در لایه پوشش گیاهی 10 درصد و در لایه بدون پوشش 25 درصد کاهش می دهد. برای تعیین ضریب درگ گیاهی (CD)، عدد رینولدز گیاهی ویژه (〖Re〗^*) معرفی شده و یک رابطه تجربی با دقت قابل قبول پیشنهاد شده است.

    کلیدواژگان: استغراق، پروفیل سرعت، پوشش گیاهی، توزیع تصادفی، ضریب درگ
  • حمیدرضا باقری، منوچهر حیدرپور* صفحات 93-101

     پرش هیدرولیکی پدیده ای است که هنگام وقوع، انرژی بسیار زیاد و مخرب جریان آب آزاد می شود و اثرات بسیار مخربی بر بستر رودخانه ها و سازه های هیدرولیکی از خود به جا می گذارد به گونه ای که سبب تخریب بستر و دیواره های مجرای انتقال جریان در محدوده وقوع پرش می گردد. به منظور کنترل و کاهش اثرات مخرب پرش هیدرولیکی، حوضچه های آرامش در سازه های آبی طراحی و اجرا می گردند. در این پژوهش 27 آزمایش در کانال آزمایشگاهی با استفاده از صفحات مستغرق با زاویه حمله 30 درجه که به منظور کنترل پرش هیدرولیکی در بستر کانال چسبانده شده اند انجام شده است تا با قراگیری مقابل جریان فوق بحرانی آب از آثار مخرب آن بکاهند. صفحات مستغرق به صورت گروه صفحات سه تایی و با دو آرایش قرارگیری متفاوت نسبت به یکدیگر، به منظور کاهش عمق ثانویه و طول نسبی پرش هیدرولیکی بر بستر حوضچه آرامش قرار داده شدند. فاصله هر یک از گروه صفحات مستغرق در این پژوهش نسبت به یکدیگر 0.2 و 0.3 متر در بازه عدد فرود اولیه (4.58،9.14) در نظر گرفته شد. نتایج بدست آمده نشان می دهد استفاده از صفحات مستغرق در بستر، می تواند موجب کاهش طول نسبی و عمق ثانویه پرش هیدرولیکی به ترتیب تا مقدار 15.5 و 4.9 درصد نسبت به پرش کلاسیک شود. همچنین بکارگیری صفحات مستغرق در بستر کانال موجب افزایش3.9 درصدی افت انرژی نسبت به پرش هیدرولیکی کلاسیک گردید.

    کلیدواژگان: پرش هیدرولیکی، صفحات مستغرق، عمق ثانویه، طول پرش هیدرولیکی، افت انرژی
|
  • Mojtaba Hassanpour, Hossein Khozeyme Nezhad *, Abolfazl Akbarpour Pages 1-10
    Introduction

    Among the problems faced by artificial feeding methods, we can mention low rainfall, limited water resources, high temperature and high evaporation, high sediment yield due to poor vegetation cover, etc. Artificial feeding methods in these areas should be designed in such a way that it has maximum efficiency from the available water resources. In this research, it has been tried to reduce the aforementioned problems by presenting a new method of artificial nutrition suitable for desert areas. In order to design a suitable method of artificial nutrition, sufficient information about the distribution of water flow in the soil is needed. On the other hand, research on the distribution of water flow in porous media without modeling the field conditions is time-consuming and expensive. In the current research, the issue of determining the infiltration capacity in the unsaturated environment was discussed using the integration of the infiltration trench and the permeable pipe in the laboratory environment.

    Method

    For this purpose, a physical model was built in which water was injected into the unsaturated environment through a permeable pipe and a trench. The input flow to the model included 5 flow rates of 1, 1.5, 2, 2.5 and 3 liters per minute. With the beginning of the experiment, which was entered into the model with the mentioned flow rates, the amount of progress of the moisture front was determined every 5 minutes. This process continued until the moisture front reached the water level. At the same time as the water was removed from the model, the output flows were measured every 5 minutes. The way water moves in the unsaturated environment and the formation of the moisture front was photographed and the images were analyzed using Plot Digitize and AutoCAD software. In the next step, after creating a flow in the porous medium, the volume of passing water was measured in different conditions at a certain time. The amount of water output from the model depends on factors such as the flow rate entering the model, the dimensions of the model, the slope of the ponding surface, the distance between the bottom of the trench and the ponding surface, the texture of the soil, the length of the trench, the width of the trench, the height of the permeable pipe to the bottom of the trench, the average diameter of the permeable material, and the entry time. The water depends on the model until it reaches the stagnation level and the time it takes for the water to reach the stagnation level until the end of the test. In the experiments, the input flow to the model was variable and other factors were considered fixed. After the water reaches the stagnation level in time intervals of 5 minutes for 60 minutes (a fixed time, the duration of which is obtained according to reaching the peak output flow rate from the model and preliminary tests for the lowest flow rate) It was measured for all model inlet flow rates. Next, after the completion of 60 minutes, the amount of water output from the model was measured for another 30 minutes. In flow rates of 2.5 liters per minute and 3 liters per minute, due to the fact that the inlet flow rate was higher than the capacity of the model, the excess water volume overflowed from the model. Then the inlet was cut off and for another 120 minutes, the output flow rate from the model was measured in 5 minute intervals. Then, the volume of water entering the tank (V_in) and the volume of water leaving without calculating the base flow that was mentioned earlier was measured to simulate the static level, V_out=(V_B-V_A). V_A is the volume of water input to simulate the static surface and V_B is the volume of water output from the model. The performance of the model was calculated based on V_out in relation to the volume of water coming out of the model without calculating the base flow rate as maximum 〖(V〗_(out max)) and also V_out was calculated in relation to V_in.

    Results

    The highest penetration capacity of the model was determined to be 2.049 liters per minute. The results showed the trend of changes in the output flow from the model, the time the moisture front reached from the trench to the reservoir surface, the average infiltration velocity, V_out, the time to reach the maximum output flow from the model, and the slope of the water discharge line from the model after approaching the flow rate proportional to the capacity. The influence of the model has decreased. The performance of the model was evaluated based on V_out during the duration of the experiment in two modes. The best performance of the model was related to the flow rate of 2 liters per minute, which is the closest flow rate to the flow rate corresponding to the infiltration capacity of the model. The results showed that the performance at a flow rate of 2 liters per minute in the case where V_out was measured in relation to V_(out max) (water entering the model is less than the infiltration capacity of the model), 96% and in the case where V_(out max) was compared to V_in was taken into consideration (water flow entering the model is greater than the infiltration capacity of the model), its performance was determined to be 98%. In the presented artificial feeding method, the inlet flow rate through the permeable pipe should be designed according to the infiltration capacity of the trench so that the maximum capacity of the trench is used and water loss is minimized.

    Keywords: Artificial nutrition, Groundwater, moisture front, physical Model
  • Mahdi Mokari *, Amirhossein Ghaderi, Javad Alaei Pages 11-21

    Salinity is the main problem of the fields under irrigation in many regions of the world which has been caused the farmers encountered with some questions such as determining of the optimum depth of irrigation water by using of saline water, reuse of drained water from the agricultural fields and yield reduction that resulting in reduction revenue by using of saline water. Water shortage and unsuitable quality of irrigation water are two main factors which has restricted the crop production in many regions of Iran. Among environmental stresses, salinity stress is the main factor of crop reduction. Many physiological processes of plants such as germination, seedling growth, flowering and fruit ripening are decrease by increasing in salt concentration in soil and irrigation water. Deficit irrigation and soil or irrigation water salinity decrease the matric and osmotic potential in soil water content respectively, which are resulting in reduction of water absorption by plant roots. Camelina (Camelina sativa L. Crantz) is a plant with oil seed from Brassicaceae family that interest to its planting has increased in recent years. The causes of that are high tolerance of this plant to unfavorable environmental conditions and usage possible of it for many purposes. Appropriate usage of yield- salinity- water crop production functions can be improved agricultural water consumption management in regions with scarce of water resources. Crop production functions such as linear form, Cobb-Douglas, quadratic and transcendental function models were used to simulate relative grain yield of camelina. As the area study in this research namely Kashmar plain, has been forbidden for withdraw of groundwater and many agricultural deep wells in this area have high salinity water, in order to optimum management water consumption in agriculture, determining of the best water-salinity-yield production function for crops such as oil seed plants (canola, seasame and camelina) are essential. For the first time, camelina was planted in Kashmar natural resource and agricultural research center as pilot plan in 2021. As the compounded effects of salinity and water stress on camelina grain yield has been not investigated in this area, the objective of this research was to obtain the optimum crop production function as affected by drought stress and irrigation with saline water. A greenhouse experiment was conducted as a factorial in the form of a completely randomized design with three replications. The experiment treatments were four levels of salinity including drinking water S1=0.7, S2=4, S3=8 and S4= 12 dS m-1 and three levels of irrigation water including W1 (100% provided crop water requirement), W2=0.75W1 and W3=0.5W1 applied in a loamy sand soil texture with bulk density of 1.41 gr cm-3. Linear, Cobb-Douglas, quadratic and transcendental function models were used to simulate relative grain yield of camelina. In order to determine of optimum crop water production function, statistical analysis was done on obtained data and by determining of related statistics the role of each input was characterized quantitatively. For assessing of validation, the obtained functions, the statistics including maximum error (ME), root mean square error (RMSE), determining coefficient (R2), efficiency function (EF) and coefficient of residual mass (CRM) were used. The results showed that quadratic function model was the most appropriate model for estimating of grain yield of camelina under pot planting conditions in greenhouse. Marginal product (MP) and marginal rate of technical substitution (MRTS) indices of grain yield related to quality and quantity of irrigation water showed that with increase a centimeter of irrigation water depth (hypothesized salinity is constant), camelina grain yield increased 56.8 kg ha-1. Also, MP related to irrigation water salinity indicated that with increase a unit of salinity (hypothesized irrigation water depth is constant) camelina grain yield decreased 38.7 kg ha-1. According to findings of this research it could be said that 70 mm depth of irrigation water and EC less than 4 dS m-1 is suitable for achievement to optimum grain yield of camelina under pot planting conditions in greenhouse. It is noteworthy that further consumption of water by plant (almost 300 mm) and longer of growth period duration of plant in field compared to pot planting conditions in greenhouse caused to production function coefficients recommended in this study would not be applicable in field conditions and it is necessary that supplemental studies would be conducted for determining of optimum yield- salinity- water production functions of camelina under field conditions.

    Keywords: salinity stress, drought stress, Evapotranspiration, Water use efficiency
  • Mehdi Rahmani, Seyed Habib Musavi-Jahromi *, Hossein Hassanpour Darvishi Pages 23-30
    Introduction

    According to the ranking of the World Resources Institute, Iran ranks 14th in water stress in the world, and is among the 20 countries with the highest water stress in the world. The current process of extracting underground water resources in Iran is an unstable process and its continuation will cause serious irreparable damage to the quantity and quality of aquifers. The security of underground water resources is considered more complicated in some provinces of Iran due to the degree of dependence on underground water resources. About 85% of the water needed in Alborz province is supplied by relying on ground water sources, and the population growth of Alborz province is more than three percent and twice the average population growth of the country. This has caused Alborz province to suffer unbalanced development in all fields; Alborz water resources are not able to respond to this unbalanced development and this has caused water tension in Karaj metropolis and surrounding cities and even villages. The unbalanced development process of Alborz province in recent years has aggravated the security crisis of underground water resources and water stress. With the growth of demand in the future, the competition for water resources will increase and the sustainable management of underground water resources is considered as a challenge in the region. Among the approaches of sustainable management of water resources, Water-Food-Energy Nexus provides the necessary prerequisites for the sustainable management of existing limited resources in an integrated manner.

    Methods

    The present study deals with the dynamic modeling of sustainable management of underground water resources based on the security of water-food-energy nexus resources and analyzes the solutions of sustainable management of underground water resources according to the trend of population changes, economic growth and the development of renewable energy sources. It is for this purpose, a dynamic model was designed using time series data, and after validation, the model was simulated in a twenty-year horizon. The base year in the model is 2011, and time series data from 2011 to 2016 were used to evaluate the behavioral validity of the model. Validation of the model included goodness of fit tests, dimensional consistency tests, boundary adequacy tests, behavior reproduction tests, and integration error tests. Also, in terms of behavior, the behavior of the model variables was approved by the experts.

    Results

    According to the results of model sensitivity analysis and feasibility studies of operational plans for water resources management in Alborz province and with the participation of Alborz regional water policy makers, three scenarios to improve the security of underground water resources with regard to the link between the security of water and food resources -Energy was considered: 1- The security of underground water resources based on the optimal exploitation of water supply resources, including the policy of artificial feeding of aquifers: the policy of blocking unauthorized wells and controlling withdrawals. Unauthorized and the policy of building and operating systems for storing and extracting rainwater and gray sewage effluent and reuse, 2- The security of underground water resources based on the management of agricultural water demand, including the policies of the development policy of irrigation systems, the policy of promoting the model suitable cultivation with climatic conditions and ecological power and the policy of reducing agricultural waste during the production period and the policy of developing the performance of agricultural products and the development of mechanized cultivation and 3- the security of underground water resources based on the management of electric energy demand, including the policies of the policy of consumption optimization and Reduction of electrical energy loss, the policy of building a power plant for heat recovery from industrial processes, the policy of exploiting the potential of solar renewable energy was designed and a group of policies were identified. The findings of the WFEN-SD model indicate that the combined policy is the best solution for the sustainable management of underground water resources and includes: artificial feeding of the aquifer 10 million cubic meters annually; Organizing and controlling withdrawal from wells; Exploitation of gray wastewater and reuse and supply of 10% of agricultural water; 10% development of irrigation efficiency with new irrigation systems; 10% reduction in agricultural waste; 10% development of agricultural products yield by seed improvement, plant preservation and pest control and mechanized cultivation support policies; 5% reduction of electrical energy loss in combined cycle power plant and development of solar pumping systems in the agricultural sector.

    Keywords: Sustainable Groundwater Resources Management, Dynamic analysis of policies, Water-Food-Energy Nexus
  • Mehdi Dastourani *, Fatima Shirzadi Pages 31-39
    Introduction

    The transfer of solid particles in fluid flow has been a common phenomenon in nature. The threshold of movement of sediments from the physical dimension is mixed with both deterministic and random characteristics. Certainty in the movement threshold is caused by the average flow rate, while its randomness is caused by the turbulence of the flow. The initial movement of sediment is the beginning of scouring process in natural streams. The sedimentation threshold is the condition where the destabilizing forces equal the stabilizing forces and the sediment particle is on the verge of experiencing primary motion. Two common sedimentation threshold parameters, Shields parameter and moving number, have been studied by different researchers. The initial movement of bed sediments is an important component for various researches such as sustainable waterway design, river management, sediment transport and sedimentation prevention. The beginning of the movement of sedimentary particles is called the threshold of movement and the conditions in which the particles are on the threshold of movement are called threshold or critical conditions. In low-speed flows, the substrate particles do not have any movement and are fixed in their place, but with the increase in the flow speed, the substrate particles start to move. This movement is initially in the form of up and down of the particle without transfer, but gradually the movement The particles start downstream.

    Methods

    In the current research, the criterion of the threshold of particle movement is the beginning of non-stop movement of particles that are set in motion in the model and move along the flume to the downstream side of the flume as the threshold of particle movement. During the test, the flow rate of the model and the upstream water level are controlled several times so that there may be no change. From dividing the flow rate, leading to the movement threshold by the flow section, the critical speed or the movement threshold speed is determined. To find the threshold speed of movement of a sediment sample in a specific slope of the channel, each experiment is repeated several times and the results are averaged. After finishing the test, the remaining sediment on the metal plate is removed. Some of the sediments have also entered the tank, and after collecting the sediments, they are dried and prepared for the next stage of tests. After the completion of each test, the slope of the channel is changed so that the main section is placed in another slope. Then all the steps mentioned above are repeated again. It seems that the Shields diagram is the reference point for all the research done in the field of sediment transport. Due to the fact that no research has been done on the effect of temperature on the Shields diagram, the present study aims to investigate the sediment movement threshold using the effect of temperature on the Shields parameter and shear stress in a laboratory model with three slopes of 0.005, 00.1 and 0.05 at four temperatures of 8, 12, 20, and 40 degrees Celsius and three flow rates. In the current research, the criterion of the threshold of particle movement is the beginning of non-stop movement of particles that are set in motion in the model and move along the flume to the downstream side of the flume as the threshold of particle movement.

    Results

    In this research, using the physical model and dimensional analysis, the condition of movement threshold in open channels with rectangular section was investigated. The results showed that with the increase of relative roughness (ds/y) regardless of the temperature variable, the stability number of the particle at the movement threshold (SN) decreases and the influence of the slope on these two parameters is not noticeable. Also, in the condition of constant slope and relative roughness (ds/y), with increasing temperature, the value of particle stability at the movement threshold (SN) decreases. Changes in particle stability number at the threshold of movement (SN) have an upward trend with respect to temperature, and with increasing temperature, the number of particle stability at the threshold of movement (SN) increases. In addition, the changes of the relative roughness parameter (ds/y) with respect to temperature are associated with a downward trend, and with the increase in temperature, the relative roughness parameter (ds/y) decreases. In addition, as the slope increases, the particle stability parameter decreases. This result can be extended to different seasons of the year so that the threshold of sediment movement and sedimentation in seasonal and permanent rivers is lower than in cold seasons in hot seasons. Comparing the results of the current research with the results of other researches, there is a very small difference between the results of this research and the results of other researchers. The main reasons for these differences are the different definitions of movement threshold among researchers, the different flow conditions and test conditions.

    Keywords: Motion threshold, Particle Stability, Relative Roughness, Rlope
  • Hossein Bagheri *, Hamid Zare Abyaneh, Azizallah Izady, Hassan Bagheri Pages 41-49
    Introduction

    Tracing the reactive material through soil is crucial for the health of the environment, water resources and agricultural products. One of the widespread elements in agricultural lands is sodium, which affects on soil physical structure and water movement and solute transport in soil. Therefore, it is important to trace and remediate the sodium transport through the soil and know the fate of this element in the root zone. Many factors can affect the transport of an ion through porous media, in which soil moisture condition and application of amendment such as vermicompost are very effective due to altering the hydraulic and physical conditions of the soil. Therefore, the aim of the current study is to model the sodium transport in natural soil and soil amended with vermicompost under saturated and near-saturation conditions with three models of equilibrium, one-site sorption and two-site sorption. Moreover, sensitivity analysis was employed to explore the effective parameters of the breakthrough curve of sodium.

    Methods

    Two media including natural soil with loamy sand texture and soil amended with vermicompost were prepared, in which amended soil was achieved by mixing 1.45 gr vermicompost with 100 gr natural soil. In order to conduct the experiment, 350 gr of each soil sample was placed into the columns with a length and a diameter of 10 and 5.95 cm, and then all soil columns were saturated for 24 hrs and leached with distilled water for another 24hrs. After leaching, a solution containing 1mM KNO3 and 0.435mM NaCl was applied with flow rates of 3.17-4.28 and 2.5 cm3/min for 270 minutes under saturated and near-saturated conditions (water saturation (Sw)=1 and 0.98), and soils were leached with distilled water again under aforementioned conditions during 300 minutes. The effluent solutions were collected and their Na contents were measured using flame photometry. Next, Hydrus-1D program was employed to simulate the experimental breakthrough curves of sodium using Advective-Dispersive equation coupled with equilibrium, one-site sorption and two-site sorption models. The unknown coefficients were KD for equilibrium model, KD and α for one-site sorption model and KD, F and α for two-site sorption model. The sensitivity analysis was performed for all unknown coefficients of the models to clarify the role of each coefficient on the simulated curve.

    Results

    The values of RMSE for equilibrium, one-site sorption and two-site sorption models were respectively 0.02-0.19, 0.003-0.03 and 0.003-0.03, which indicates equilibrium model has an unacceptable accuracy compared to the one-site and two-site sorption models, and two-site model has the highest accuracy. Equilibrium model had poor performance at all parts of all curves, while the poor performance of the other models occurred at the breakthrough point and slop of some curves. The relatively similar accuracy of one-site model with two-site model and the fraction of sorption sites (F)<0.5 in two-site model indicated that the transport of sodium in the both soils was mainly controlled by the sorption/desorption kinetic process. The application of vermicompost and desaturation from Sw=1 to 0.98 decreased the values of F to 66.5 and 85.5% respectively, indicating that the kinetic process was more predominant in amended soil and unsaturated conditions. The values of distribution coefficient (KD) were altered by changing the conditions in all models. The values of KD increased by the application of vermicompost and soil desaturation to 3.4 and 12.6%, respectively. It shows that the sorption capacity of amended soil is higher than that of un-amended soil, and it is increased under unsaturation conditions compared to saturated conditions due to the presence of air bubbles in soil and a delay in water and solute transport. Employing the fraction of sorption sites in two-site model compared to on-site model changed the values of first-order rate coefficient (α) from 0.01-0.032 to 0.005-0.016 min-1 leading to a reduction by 47%. The values of α were decreased by a reduction in flow rate due to the lower sodium diffusion. The results of sensitivity analysis showed that KD had the most effect among the coefficients on fitting the breakthrough curve, and altered all parts of the curves including the breakthrough and peak points and the slope. The one-site model had low sensitivity to α, which its variation led to a small change around the peak point. The sensitivity of two-site model to the both coefficients of F and α was moderate, by which the curve had a variation on the peak point and slope. Overall, the sensitivity of coefficients of two-site model showed the trend of KD>F>α.

    Keywords: equilibrium model, one-site sorption model, two-site sorption model, distribution coefficient, fraction of sorption sites
  • Chonoor Abdi, Sattar Zand Salimi, Hamid Zare Abyaneh * Pages 51-61
    Introduction

    Irrigation is of major importance in many countries. It is important in terms of agricultural production and food supply, the incomes of rural people, public investment for rural development, and often recurrent public expenditures for the agricultural sector. Yet dissatisfaction with the performance of irrigation projects in developing countries is widespread. Despite their promise as engines of agricultural growth, irrigation projects typically perform far below their potential. A large part of low performance may be due to inadequate water management at system and field level. Performance evaluation is an essential part of irrigation systems. Performance of irrigation systems is evaluated for a variety of management objectives. Several researchers have proposed various indicators to assess the performance of irrigation systems. Most of them focused on internal processes of irrigation schemes that relate performance to management objectives such as the area irrigated, crop patterns and distribution and delivery of water. Most of researchers have conducted studies to assess the performance of irrigation management process using financial and physical indicators. Comparative indicators are more suitable than process indicators due to the real evaluation of network performance. Comparison aims to improve the performance of the schemes by identifying shortcomings and benchmarking best practices. In this research the performance of the Gavoshan Irrigation Network in the Kamyaran region of Kurdistan Province was evaluated using some comparative indicators provided by the International Water Resources Management Institute (IWMI) at three groups of comparative performance indicators: agricultural output, water supply and financial indicators.

    Methods

    In this research, the irrigation and drainage sub-system network of B2 construction area of Kamiyaran Bilehvar plain located in the Gavshan reservoir dam in the south of Kurdistan province with an area of 3500 hectares was evaluated. Comparative performance assessment in irrigation schemes is possible through use of comparative indicators. External indicators are those indicators based on outputs and inputs from and to an irrigated agricultural system. In this research Using the indicators of the International Water Management Institute (IWMI) in three groups, agriculture, water consumption and network performance were evaluated. These indicators need data that is available and easily to analyze. The data required includes the crop yield the irrigated area of the plant in the cropping season the water requirement of the plants the cultivation pattern and the information about the amount of water delivered to the network. The indicators of Output per unit command area, Output per unit cropped area, Output per unit irrigation supply, Output per unit water consumed, Relative water supply, Relative irrigation supply, Irrigation ratio, cropping intensity and Water delivery capacity were investigated. The water supply indicators are based on irrigation and water supply/delivery measurements being related to demands or irrigated area.

    Results

    Irrigation water management is ultimately meant to enhance agricultural production through sustainable water use. Annual relative water supply and annual relative irrigation supply were evaluated for the agricultural system. Annual values of four water supply/demand values were determined. These indicators provide the basis for comparison of irrigated agriculture performance and they relate output to unit land. The performance results of the studied network in terms of water and land efficiency show that the performance of the current state of the network is generally reasonable. The analysis of water consumption performance showed that the values of relative water supply and relative irrigation supply were calculated as 1.3 and 0.94, respectively which means that the water required by the network is supplied by 0.06 less. And the demand for irrigation is slightly more than its supply, which should be made aware of the dangers of excessive demand by educating users. The difference between the values of RWS and RIS is due to the rainfall in the network area during the cropping season. In this study, in general, RWS and RIS values show that the water requirement of crops in the network are supplied. Physical performance was evaluated well in terms of cultivation intensity and irrigation ratio. The water delivery capacity of the main channel of the Gavoshan network is 0.97, which means that the water needs of crops are approximately met for the current cropping pattern. However, in the event of a change in cropping pattern, to avoid water stress first the capacity of the irrigation channel to supply the water needs of the new crop pattern in the peak month of the plant should be checked.

    Keywords: Comparative Indicators, Irrigation Scheme, Performance Evaluation, productivity
  • Parisa Karimi, MohammadHassan Biglouei *, Amir Sahraro, Hidayat Zakizadeh, Babolla Faraji Pages 63-72
    Introduction

    Water and nitrogen are the most important factors affecting the quantitative and qualitative performance of medicinal plants. Since the performance of the fertilizer level depends on the appropriate amount of irrigation water, it is important to examine the water and nutritional requirements of medicinal plants in order to achieve the desired quantitative and qualitative performance and the physical and economic water productivity indexes of these plants. Celandin (Chelidonium majus L.) plant is one of the very old medicinal plants, and all its parts, especially its sap and root, were used in the treatment of skin disorders, especially leprosy, toothache, and also as a choleretic, and in recent years most of its aerial parts, which are collected during the flowering stage, are used to treat some diseases, especially cancers of the digestive system. Also, all the parts of this plant contain orange sap rich in alkaloids Chelerythrine, Chelidonine, Sangunarin, Berberine, etc., which increases the importance of the production of this plant. There are many reports about the effect of irrigation interval and nitrogen fertilizers level in relation to various agricultural, garden and medicinal plants, but there is still no comprehensive and complete information about the effect of these factors and their optimal levels for the cultivation of Celandin medicinal plants. Therefore, it is necessary to evaluate the yield and indexes of physical and economic productivity of water in Celandin medicinal plant at different levels of irrigation and nitrogen fertilizer.

    Methods

    In order to investigate the effect of the irrigation interval and ammonium nitrate on the yield and indexes of physical and economic water productivity of Celandin (Chelidonium majus L.) medicinal plant, an experiment was conducted as a factorial in the form of a completely randomized design in three replications in the research greenhouse of the Faculty of Agricultural Sciences of University of Guilan in 2017. The factors include irrigation interval in three levels (4, 8 and 12 days) respectively as I1, I2 and I3 and nitrogen fertilizer based on ammonium nitrate in five levels (0, 45, 60, 75 and 95 kg per hectare) as respectively was N0, N45, N60, N75 and N95. To prepare the planting bed, the top soil of the garden, dune sand, and animal manure were mixed in the ratio (1:1:1) and filled in pots with an average diameter of 20 cm and a height of 18 cm. After preparing the soil sample, some physical properties (soil moisture coefficients of FC and PWP using a pressure plate device, soil texture using the hydrometric method and dry bulk density using the core sampler method) and chemical properties of the soil (calcium, potassium, phosphorus, nitrogen, organic carbon, pH and ECe) were determined. At the end of the experiment, when the plants flowered (about 225 days after transplanting), to calculate the weight of the roots and aerial parts, the plants were removed from the pot and their roots were separated from the aerial part. After washing the roots, each one was weighed separately with a sensitive digital scale (Sartorius model) with an accuracy of 0.001 grams. Then, with regarding the amount of water consumed in each irrigation treatment, the physical and economic water productivity indexes were determined based on the wet weight of the whole plant, which includes the root and aerial parts of the plant.

    Results

    The results of variance analysis of data showed that the interaction effect of irrigation interval and amount of ammonium nitrate on yield and indexes of physical and economic water productivity was significant at the 5% probability level. Thus, the highest plant fresh weight was obtained with 92.92 g/plant in an 8-day irrigation interval with a fertilizer level of 95 kg/ha, and the lowest with 45.36 g/plant in a 12-day irrigation interval with a fertilizer level of 60 kg/ha. Also, the highest indexes of physical and economic water productivity based on benefit per drop and net benefit per drop based on the fresh weight of the total plant with 8.65 kg/m3 and 3463932999 and 17319665 rials/m3 respectively in the 8-day irrigation interval treatment with fertilizer level 95 kg/ha, and the lowest of them was obtained with 2.44 kg/m3, 9774464 and 4887232 rials/m3 respectively in the 4-day irrigation interval treatment with zero fertilizer level. In addition, 50% water consumption was saved in the 8-day irrigation interval treatment compared to the 4-day irrigation interval treatment. Therefore, I2 irrigation interval treatment with N95 ammonium nitrate fertilizer level is the most suitable option in terms of yield and physical and economic water productivity indexes for the production of the medicinal plant Celandin in greenhouse conditions.

    Keywords: Benefit per drop, Fresh weight of the total plant, Net benefit per drop, Water Consumption, Water productivity
  • Sara Ahmadi Adli *, Akram Abbaspour, Ali Hosseinzadeh Dalir, Javad Parsa Pages 73-82
    Introduction

    Regarding the growing awareness of the environmental issues over the past decades, the main aspect of river engineering has been the environmental improvement of the rivers. River restoration refers to the environmental and ecological aspects of river engineering. New eco-friendly river restoration techniques such as vanes, deflectors, W-weir, U-weir, cross vane and J-hook vanes are generally designed and implemented in accordance with different hydraulic conditions to control the river bed, stabilize the banks, improve the river ecosystem conditions and to overcome the negative effects of the conventional structures on river natural functioning. These structures performance has been evaluated in many studies. Bank-attached vanes are one of the eco-friendly structures. In the present paper, the effect of the different geometry and permeability rates of these structures on turbulent flow pattern has been investigated.

    Methods

    Turbulent flows are simulated by solving the Navier-Stokes equations. FLUENT software and large eddy simulation (LES) mathematical model were used to solve the Navier-Stokes equations and simulate the turbulent flow field around bank-attached vanes in a straight channel. Smagorinsky-Lilly subgrid-scale model was used to model unclosed residual stress tensor (τ_ij) in the governing equations. It must be noted that subgrid-scale turbulence models in FLUENT employ the Boussinesq hypothesis to calculate subgrid-scale stresses (τ_kk). To simulate the flow field affected by different bank-attached vanes, boundary conditions, flow depth and approach flow velocity were determined. Streamwise measured and simulated free surface profiles around 30% permeable rectangular vane at different Y/L positions were compared to evaluate the numerical model accuracy. Numerical and experimental results agreed well since relative average error values were 4-5% in all cases. Furthermore, a mesh composed of approximately 150000 elements was considered as an optimum mesh for all created models to resolve flow characteristics. However, due to the different permeability rates, generating the optimum mesh for all cases it is not possible.

    Results

    Velocity magnitude results around bank-attached vanes revealed the presence of two flow zones which are the main flow field, upstream and downstream separation region formed due to the local effects of the bank-attached vanes and channel constriction. These zones are separated by a fully turbulent and dynamic flow, named the detached shear layer. In general high velocity zones near the vanes tip region and channel bed effect the local scour hole characteristics, thus tip velocity and maximum velocity variations are investigated at the near bed horizontal plane. Moreover, parameters such as tip velocity, maximum velocity and flow separation angle are affected by the interaction of different eddies, varying geometry and permeability conditions. Results showed that tip velocity and maximum velocity ratios have declining trend with increasing permeability rate. Generally by increasing the permeability rate, bank-attached vanes do not have a significant effect on flow pattern. Bed shear stress is considered as one of the primary parameters that affect the main flow field and downstream separation zone, results showed that due to the local effects of the bank-attached vanes, channel constriction and interaction of the horseshoe vortices downstream of the simulated vanes, maximum bed shear stress values mainly occurred at X⁄L= 2.4 section. Furthermore, by increasing the permeability rate, maximum bed shear stress values shifted towards the channel centerline. In general, due to the triangular vanes cross-sectional opening (geometry), these structures effect on flow characteristics is smaller in comparison to the rectangular vanes.

    Keywords: Eco-Friendly Structures, Fluent, Geometry, Large Eddy Simulation, Permeability
  • Sima Samadi Gharehverana, Akram Abbaspour *, Davod Farsadizadeh, Ali Hosseinzadeh Dalir Pages 83-92
    Introduction

    The roughness of the open channels bed and the walls have a great impact on the hydraulic characteristics of the flow, and to perform the best management and control tasks, the change in the behaviour and characteristics of the flow in the presence of these roughness should be known well. Vegetation is one of the most important and common roughness, which have various types and characteristics. One of the most important characteristics is their degree of flexibility, which are usually divided into two general categories: rigid and flexible. From the past until now, researchers are always trying to predict the effect of the presence of vegetation on the flow path and to provide more accurate relationships for predicting different characteristics of the flow, including the flow velocity. The vegetation studied in this research is rigid and inflexible, and to bring the vegetation conditions close to their natural state, its height distribution is considered non-uniform and random.

    Methods

    Experiments were carried out using a rectangular flume with a length of 10 m, a width of 0.5 m and a depth of 0.6 m. At the downstream end of the flume, a rectangular weir with an adjustable angle was installed to adjust the flow height inside the channel and the vegetation submergence ratio. Vegetation models used in the experiments include stainless steel cylinders at three heights 3.5, 5 and 7 cm, which are used to simulate hard plant stems. During the experiments, the submergence ratio of the cylinders has been considered variable. The diameter of the cylinders is 5 mm. The distribution of the cylinders is staggered, where the longitudinal and lateral distances are the same, but the height distribution is completely random, and Mathematica software was used to generate random numbers to determine the location of each cylinder. The distance between the cylinders and, as a result, the vegetation density per unit area is variable and in total three different densities were considered for stems. The flow discharge varied between 5 and 60 lit/s and an ultrasonic flowmeter was used to measure it. Velocity measurement started from 4 m from the channel entrance. A 3D ultrasonic velocimeter (ADV) with a frequency of 25 Hz was used to measure the point velocity. The flow is assumed to be uniform and steady for all experiments.

    Results

    The distance between the cylinders and, as a result, the vegetation density per unit area is variable and in total three different densities were considered for stems. The flow discharge varied between 5 and 60 lit/s and an ultrasonic flow meter was used to measure it. Velocity measurement started from 4 m from the channel entrance. A 3D ultrasonic velocimeter (ADV) with a frequency of 25 Hz was used to measure the point velocity. The flow is assumed to be uniform and steady for all experiments.Analytically using the momentum equation in the layers with vegetation and the logarithmic law in the layers without vegetation. The velocity profile is presented in this research, unlike the uniform distribution, has two inflection points whose position depends on the vegetation density. To determine the CD, a special plant Reynolds number (Re*) has been introduced, and as this Reynolds number increases, the drag coefficient decreases. An empirical relationship between CD and the effective parameters is presented. The effect of different dimensionless parameters that were extracted through dimensional analysis, was investigated on the flow velocity and the results show that with the increase in the flow Reynolds and the Froude numbers, the velocity increases in all the flow layers, but the change of these numbers has no effect on the position of the inflection points of the velocity profile. With the increase of the vegetation density, the flow velocity in the vegetation layers and the upper layer decreases and increases, respectively. By increasing the submergence ratio of the cylinders for a constant flow rate, the flow velocity decreases in all three layers, but the effect of the submergence increase on the flow velocity is different for the flow layers, so for example, with a 30% increase in the submergence ratio, the average velocity decrease in the vegetation layer is 10%, however, shows a decrease of 25% in the upper layer. As the results showed, with the change of vegetation conditions, many hydraulic properties of the flow changed, so this field still needs to be discussed. The present study was conducted on hard vegetation that has a random height distribution with regular intervals. In future studies, researchers can study natural vegetation with random intervals and bring their laboratory conditions closer to the conditions of the vegetation distribution in natural riverbeds.

    Keywords: Submergence, velocity profile, Vegetation, random distribution, Discharge coefficient
  • Hamidreza Bagheri, Manouchehr Heidarpour * Pages 93-101
    Introduction

    Hydraulic jump is a rapid energy dissipation phenomenon that falls under the sub-branch of hydraulic science. It involves a transformation of water flow from a shallow and high-velocity state to a deep and low-velocity state, leading to substantial energy dissipation. This energy dissipation primarily occurs through the conversion of kinetic energy into thermal energy, resulting in a significant reduction in destructive effects (Chanson, 2011). To control hydraulic jumps, energy dissipaters, such as baffles are used in the stilling basins. One possible alternative to the use of baffles is the implementation of artificial roughness on the channel bed. This approach involves introducing roughness elements that disrupt the water flow, which leads to unequal momentum at the inlet and outlet. Specifically, the resistance forces exerted by the roughness elements reduce the momentum at the outlet (Beirami & Chamani, 2010). Ead and Rajaratnam (2002) studied the effect of wavy beds on hydraulic jump characteristics. Similarly, Abbaspour et al. (2009) found that the use of sinusoidal-shaped roughness elements resulted in a decrease in the length and depth of hydraulic jumps. Soltani (2013) investigated the impact of submerged vanes with different heights and placements in the channel bed. The findings indicated that increasing the height of the vanes resulted in a decrease of up to 9% in secondary depths and up to 18.6% in the length of the hydraulic jump. In another study by Parsamehr et al. (2020), the influence of bed slope and inverse bed slope was examined. Additionally, Pourabdollah et al. (2020) examined the effect of inverse bed slope and positive end sill on hydraulic jump characteristics. Both laboratory studies demonstrated a reduction in length and secondary depth, with the inverse bed slope having a greater impact on reducing hydraulic jump characteristics.

    Method

    The experiments were conducted at the Hydraulic Laboratory of Isfahan University of Technology in Isfahan, Iran. A Plexiglas flume measuring 8 meters in length, 0.4 meters in width, and 0.6 meters in depth was used. Submerged vanes with a fixed attack angle of 30° and varying arrangements (d=0.2, 0.3 meters) were employed as roughness elements on the channel bed. The flow rate and initial Froude number were controlled by adjusting the upper and lower initial gates. Furthermore, the position of the hydraulic jump could be regulated along the channel using the lower outlet gate. The channel consisted of two reservoirs: one located at the end of the channel and beneath it, and the other situated at the beginning of the channel and in front of it. Water was pumped from a reservoir below the channel to the upstream reservoir and then directed into the channel.To start the experiment, the pump was turned on, and both the initial and outlet gates were kept closed until the water level rose above the first gate. Then, the desired initial Froude number for the experiment was achieved by adjusting the opening of the initial gate to create the hydraulic jump. The jump could be controlled and fixed at the desired location using the outlet gate. The depths of the initial and secondary hydraulic jumps were measured using a depth gauge, while the flow rate was measured using an electromagnetic flow meter. The research involved 27 experiments with flow rates of 30, 40, and 50 l/s. Parameters such as flow rate (Q), upstream water depth (H), initial depth of hydraulic jump (D1), secondary depth of the jump (D2), and length of hydraulic jump (Lj) were measured.

    Results

    The research and experiments were divided into three stages. Initially, we examined variations in the depths of hydraulic jump in the presence of submerged vanes. These vanes had an attack angle of 30 degrees and were arranged at two different distances: 0.2 and 0.3 meters between each vanes groupes. The results showed that the presence of submerged vanes caused a reduction in the secondary depth of the hydraulic jump. This reduction was due to the obstruction of flow and the trapping of air bubbles in the protrusions created by the vanes. As a result, there was a decrease in energy dissipation, leading to a decrease in the secondary depth of the jump. To compare the relative length of the hydraulic jump, it was non-dimensionalized with respect to the initial depth. Then corresponding points for each experiment were plotted against the initial Froude number. The presence of submerged vanes in the channel bed was found to cause a decrease in the relative length of the hydraulic jump. On average, the relative length of the hydraulic jump decreased by 15.5% and 14.4% for experiments with attack angles of 30 degrees and vane distances of 0.2 and 0.3 meters, respectively. The reduction in the hydraulic jump was also greater compared to the classical condition. Additionally, the corresponding equations for each section were derived and presented.

    Keywords: Hydraulic jump, Submerged Vanes, Sequent depth, length of the hydraulic jump, Energy Dissipation