یاسمن لهرابی
-
در کشور های در حال توسعه، تمایل زیاد برای تمرکز جمعیت در مناطق شهری و به تبع آن رشد سریع و ناموزون شهر ها سبب شده است که طراحان و برنامه ریزان شهری، استفاده از سیاست ها و راهکار های مناسب را جهت اجتناب از تاثیرات مخرب زیست محیطی و اجتماعی- اقتصادی در دستور کار قرار دهند. در این راستا، اطلاعات مکانی و زمانی مرتبط با الگوهای نرخ رشد، درک بهتری را از فرآیند رشد شهری فراهم نموده و ابزار های مناسب را جهت اخذ سیاست های مدیریتی و برنامه ریزی در اختیار مدیران شهری قرار می دهند. لذا هدف اصلی این پژوهش، محاسبه احتمال تغییر رشد شهر مشهد با استفاده از روش های رگرسیون لجستیک و شبکه عصبی مصنوعی می باشد. برای این منظور، جهت تهیه نقشه کاربری اراضی، از تصاویر ماهواره ای لندست 7 (سال 2002) و لندست 8 (سال 2015) استفاده شد. سپس با استفاده از شبکه عصبی مصنوعی پرسپترون چند لایه (MLP) ، طبقه بندی تصاویر انجام شد و نقشه های کاربری اراضی شهری با دقت کلی 948/0 و شاخص کاپای 936/0 برای سال 2002 و همچنین دقت کلی 817/0 و شاخص کاپای 775/0 برای سال 2015 استخراج شدند. در نهایت، با اجرای رگرسیون لجستیک بین نقشه کاربری اراضی شهری سال 2015 (به عنوان متغیر وابسته) و فاکتور های موثر از جمله عوامل فیزیکی و عوامل انسانی به همراه نقشه اراضی سال 2002 (به عنوان متغیر های مستقل) ، نقشه پتانسیلی پیشرفت اراضی شهری تهیه شد. ارزیابی مدل رگرسیونی ایجاد شده با استفاده از دو شاخص Pseudo-R2 و ROC نشان داد که این مدل با مقدار ROC معادل 87/0 و مقدار Pseudo-R2 برابر 345/0 دارای قابلیت بالایی جهت نمایش تغییرات و تعیین مناطق مستعد تغییر می باشد و می توان برازش مدل را نسبتا خوب در نظر گرفت.کلید واژگان: مدل سازی احتمال تغییر رشد شهری, رگرسیون لجستیک, شبکه عصبی پرسپترون چند لایه, مشهد, ROCIn developing countries, the high tendency for concentration of population in urban areas and consequently the rapid and uneven growth of cities have led urban designers and planners to use appropriate policies and strategies to avoid environmental and socio-economic damaging effects on the order Work. In this regard, spatial and temporal information related to growth rate patterns provides a better understanding of the urban growth process and provides appropriate tools for obtaining management and planning policies for urban managers. Therefore, the main objective of this research is to calculate the probability of growth change in Mashhad using logistic regression and artificial neural network. For this purpose, satellite images of Landsat 7 (2002) and Landsat 8 (2015) were used to provide land-use mapping. Then, using multi-layer perceptron artificial neural network (MLP), the classification of images was made and urban land use maps with a total accuracy of 948/0 and a Kappa index of 936 for 2002 as well as a general accuracy of 8177 and a Kappa index of 775 / 0 were extracted for 2015. Finally, with the implementation of logistic regression between urban land use map 2015 (as dependent variable) and effective factors such as physical factors and human factors along with 2002 map of lands (as independent variables), the potential map of urban land development was prepared. The evaluation of the regression model generated by two Pseudo-R2 and ROC indicators showed that this model has a ROC value of 0.87 and Pseudo-R2 of 345/0 has a high ability to show changes and determine areas prone to change, and fit The model is considered fairly well.Keywords: modeling The possibility of changing urban growth, logistic regression, neural network Multilayer Perceptron, Mashhad, ROC
-
نقشه تیپ جنگل یکی از ضروری ترین نقشه های موضوعی برای مدیریت اکوسیستم جنگل است. تهیه نقشه تیپ با استفاده از روش های میدانی یا عکس های هوایی، سخت و با صرف زمان و هزینه زیاد همراه است. در مقابل، داده های ماهواره ای با ویژگی های خاص خود مانند دید وسیع و یکپارچه، پوشش تکراری، فراهم آوردن داده های بهنگام و استفاده از قسمت های مختلف طیف الکترومغناطیسی جهت ثبت خصوصیات پدیده ها، امکان مناسبی را در این زمینه فراهم می کنند. این پژوهش با هدف تهیه نقشه تیپ بخشی از جنگل های زاگرس مرکزی (ذخیره گاه جنگلی چهارطاق) با داده های سنجنده OLI ماهواره لندست هشت مربوط به شهریورماه 1395 انجام شد. نقشه واقعیت زمینی از طریق پیمایش زمینی بر اساس محاسبه تراکم درختان غالب و سطح تاج پوشش درختان با بهره گیری از اطلاعات نوع گونه، موقعیت و مساحت تاج پوشش درختان تهیه شد. به منظور افزایش قدرت تفکیک مکانی داده های چند طیفی، فنون مختلف ادغام روی تصاویر اعمال شد. بهترین نتیجه حاصل از خوارزمی حداکثر احتمال، مقادیر شاخص کاپا و صحت کلی برابر 57/0 و 63 درصد را در مقایسه با نقشه واقعیت زمینی بر اساس تراکم درختان در منطقه نشان داد. نتایج نشان داد تصاویر این سنجنده با توجه به تنوع زیاد گونه های گیاهی منطقه، قابلیت متوسطی برای تهیه نقشه تیپ جنگل را دارند.
کلید واژگان: داده های لندست 8, ذخیره گاه جنگلی چهارطاق, طبقه بندی, نقشه تیپ جنگلThe forest type map is one of the most important thematic maps for forest ecosystem management. Forest mapping using field methods or aerial photos is labor-intensive and time consuming. In contrast, satellite data with its own characteristics like large and repetitive coverage, update and useful information in various wavelengths provides a good opportunity in this regard. This research was carried out with the aim of providing forest type map of central Zagros forests (Chahartagh forest reservoir), of Iran, using the Landsat 8 Operational Land Imager (OLI) data, in August 2016.Two ground-truth maps based on tree density and tree crown area were prepared by field surveying. Moreover, ancillary data such as tree species, location and crown area was taken. In order to increase the spatial resolution of multispectral bands, various image fusion techniques were applied. The best result obtained by the maximum likelihood algorithm with kappa coefficient and overall accuracy values of 57 and 63%, respectively. Due to high species diversity in this area the results showed that the OLI images have a moderate capability to produce forest type maps in Zagros forest.
Keywords: Landsat-8 images, Chahartagh forest reservoir, Classification, Forest type map
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.