m. salehi salmi
-
نشریه تحقیقات ژنتیک و اصلاح گیاهان مرتعی و جنگلی ایران، سال سیام شماره 2 (پیاپی 60، پاییز و زمستان 1401)، صص 306 -323اسطوخودوس (.Lavandula officinalis L) یکی از گیاهان مرتعی در سراسر جهان است که به عنوان گیاه دارویی- زینتی نیز پرورش می یابد. تکنیک های کشت بافت گیاهی روش جایگزینی برای تولید انبوه گیاهان اسطوخودوس می باشد و می تواند بر مشکلات ناشی از تکثیر زایشی غلبه نماید. به منظور تاثیر ترکیب ها و غلظت های مختلف تنظیم کننده های رشدی و همچنین تاثیر نوع ریز نمونه بر فرآیندهای کالوس زایی، اندام زایی و ریشه زایی اسطوخودوس، پژوهشی در قالب طرح کاملا تصادفی در سه تکرار اجرا گردید. در این پژوهش در مراحل مختلف پاسخ های متفاوتی نسبت به ترکیب های تنظیم کننده رشدی مشاهده شد. ریزنمونه کوتیلدون در محیط کشت شامل 0/5 میلی گرم در لیتر2,4-D به همراه 0/25 میلی گرم در لیتر BAP بهترین تیمار جهت کالوس زایی بود. در اندام زایی غیرمستقیم، بیشترین تعداد شاخه و درصد اندام زایی به دست آمده در محیط کشت حاوی 2 میلی گرم در لیتر KIN حاصل شد. همچنین بیشترین تعداد شاخه از تیمار 0/5 میلی گرم در لیتر BAP همراه با 0/5 میلی گرم در لیتر KIN همراه با 0/1 میلی گرم در لیتر IBA به دست آمد. یافته ها نشان داد بهترین محیط کشت ریشه زایی محیط کشت حاوی 1 میلی گرم در لیتر IBA بود. بیش ترین درصد زنده مانی در کشت گلدان مربوط به بستر کشت پرلیت توام با کوکوپیت بود. به طورکلی نتایج به دست آمده یک سیستم کارآمد باززایی کامل برای این گیاه معرفی کرد که می تواند در تکثیر سریع رویشی، نگهداری ژرم پلاسم، و برنامه های اصلاح مولکولی از طریق مهندسی ژنتیک مورد استفاده قرار گیرد.کلید واژگان: بوته, درون شیشه ای, ریزازدیادی, سیتوکنین, ناهمسانیIranian Journal of Rangelands Forests Plant Breeding and Genetic Research, Volume:30 Issue: 2, 2023, PP 306 -323Lavender (Lavandula officinalis L.) is one of the rangeland species in the many parts of the world, which is cultivated as a medicinal and ornamental plant. Plant tissue culture techniques are an alternative method for the mass production of lavender colons and can overcome the problems caused by reproductive propagation. To determine the effect of different combinations and concentrations of growth regulators, and also explant type in the process of callogenesis, organogenesis, and rooting of lavender, a factorial experiment was conducted based on a completely randomized design with three replications. In this research, different responses to growth regulatory compounds were assessed at different stages. The best treatment for callogenesis was cotyledon explants in culture medium containing 0.5 mg/l 2.4-D along with 0.25 mg/l BAP. In indirect organogenesis, the highest number of branches and the rate of organogenesis were obtained in the medium containing 2 mg/l of KIN. Also, the highest number of branches was obtained from using 0.5 mg/l BAP treatment with 0.5 mg/l of KIN along with 0.1 mg/l IBA. The results showed that the best culture medium for rooting was the medium containing 1 mg/l IBA. The highest explants survival rate was related to using perlite and coco peat as a bed of cultivation. The finding of this research introduced an efficient regeneration system for this plant that can be used in rapid vegetative propagation, germplasm maintenance, and molecular modification programs through genetic engineering.Keywords: Subshrub, in vitro, Micropropagation, cytokinin, heterogeneity
-
تشخیص خودکار و به موقع بیماری های گیاهی، یک موضوع اساسی در نظارت و تولید محصولات سالم و باکیفیت است. لذا طراحی و توسعه روشی سریع، خودکار، ارزان و دقیق به منظور تشخیص بیماری گیاهان در مراحل اولیه از اهمیت به سزایی برخوردار است. در این پژوهش تصاویر از 40 لیلیوم آلوده به بیماری آتشک و 40 گیاه سالم توسط دوربین دیجیتال اخذ و پس از تقسیم بندی تصاویر تعداد 9 ویژگی رنگی از سه کانال RGB، Lab و HSV از ساقه و برگ گیاه و همچنین یک ویژگی مورفولوژیکی (طول ساقه) از گیاه استخراج شد. با اعمال الگوریتم پرچین های زبانی طی 100 هزار تکرار موثرترین این ویژگی ها (L برگ، L ساقه، a برگ، b برگ، H برگ، b ساقه، H ساقه، V برگ و طول ساقه) انتخاب و به وسیله خوشه بند k-means گروه بندی شدند. در نهایت نشان داده شد که دقت خوشه بند برای دو گونه بیمار، سالم و دقت کلی به ترتیب برابر با 42/96 و 100 و 63/97 درصد به دست آمد.
کلید واژگان: الگوریتم پرچین های زبانی, پردازش تصویر, تشخیص بیماری گیاه, سلامت گیاه لیلیومIntroductionThe automatic detection of plant diseases in early stages in large farms, in addition to increasing the quality of the final product, could prevent the occurrence of irreparable damage. To this end, accurate and timely diagnosis of farm conditions is of great importance. In order to facilitate production potential and prevent a significant decline in yield, disease diagnosis is necessary periodically throughout the whole life of the. On the other hand, early detection of the disease in its early stages of growth can also prevent the spread of diseases. One of the most common methods for diagnosing plant diseases is the use of visual methods, but this method is difficult to evaluate the performance of a number of parameters such as the effects of the environment, nutrients, and organisms and so on. Furthermore, the accuracy of repetitions is very much related to individual fatigue of inspector. Research on activities that have the ability to identify diseases at an early stage and prevent the spread of contagious diseases are of great importance. Therefore, the use of new applications and new detection technologies to protect can significantly reduce the risk of product loss. Therefore, the purpose of this research is to design and construct an intelligent control system that automatically detects the health of the lilium plant and to improve the plant's condition.
Materials and MethodsSample collection
In this study, 80 pots of four kilograms (including healthy and disease plants) were considered for plant growth in vegetative stage. The spring onions were grown in pots with 20 cm diameter and 30 cm height. Experiments were carried out in a greenhouse with a temperature of 27.15°C day/night and a relative humidity of 70-75%.Image processing :
In this research, the camera was placed at a constant distance of 50 cm from the flower to evaluate the stem and the leaves attached to it. The images were captured under the constant light conditions in the greenhouse during a specific hour of the day (10 to 12) every other day. The image was taken in RGB color space with a resolution of 1024 × 840 pixels, and after image transfer to the computer, image processing was performed using Matlab 2016a. After examining the plant image, 9 color channels (R, G, B, L, a, b, H, S, and V) were examined from three color spaces (RGB, Lab and HSV) and stem length to diagnosis of Botrytis elliptica disease.
Feature selection and classification :
In this research, after improving the image and extracting the feature, the linguistic hedges method was used to select the features and the K-means clustering was applied in the N-division of the k-clustering specified by the user. In this method, each attribute was assigned to a cluster closer to the mean vector. This method continues until there was no significant change in the mean vectors between successive repetitions of the algorithm.
Results and DiscussionAccording to the results of feature selection L leaf, L stem, a leaf, b leaf, H leaf, b stem, H stem, V leaf and stem length, were the best features. Moreover, the accuracy of diagnosis for the diseased and healthy plants were 96.42 and 100 percent, respectively, and the overall classification accuracy was 97.63 percent. Therefore, in general, it can be said that the proposed image processing method is desirable and acceptable in order to diagnose the disease. According to this, zhuang et al. (2017) used sparse representation (SR) classification and K-means clustering to identify leaf-based cucumber disease. In the proposed method, it has been shown that system could detect cucumber diseases with accuracy rate of 85.7%. Therefore, the proposed image processing technique seems to be able to diagnose the disease quickly and easily.
ConclusionsToday, in the modern agricultural systems, numerous computational methods have been designed to help farmers to control the proper growth of their products. However, there are still major problems with the rapid, accurate and classification of diseases in the early days of the disease. Therefore, the purpose of this study was to design, construct and evaluate a smart system based on image processing in order to identify and classify the leaf disease of the leaves of the lilium plant and remove it by spraying the contaminated parts. For this purpose, the linguistic hedges method was used to select the characteristics and k-means method to classify the infected plant from healthy. The results of the classification for the diseased and healthy plants were 96.42 and 100 percent, respectively, and the overall classification accuracy was 97.63 percent, which indicates the acceptable accuracy of the machine vision system in detecting the disease.
Keywords: Diagnosis of plant disease, Image processing, Linguistic hedges algorithm, K-means
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.