به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

فهرست مطالب mehrsa emami

  • Sara Saremi Nouri *, Mehrsa Emami, Hamidreza Kabiri, Negin Rajaei

    Variability in medication reactions and illness susceptibility among individuals is often seen in clinical settings. Personalized medicine is now highly esteemed for its focus on prescribing the appropriate medication to each patient. Metabolomics is a developing field that thoroughly assesses all metabolite and low-molecular-weight compounds in a biological sample. Metabolic profiling offers a quick overview of a cell's physiology, making the technique a direct indicator of an organism's physiological condition. Quantifiable correlations exist between the metabolome and other cellular components such as the genome, transcriptome, proteome, and lipidome. These correlations can be utilized to forecast metabolite levels in biological samples based on mRNA levels. One of the key problems in systems biology is to incorporate metabolomics with other -omics data to enhance comprehension of cellular biology. Metabolomics is used to assess the effectiveness of clinical substances by analyzing the metabolic characteristics of patients before treatment to predict their responses (pharmacometabolomic) and to identify individuals at risk of developing diseases (patient stratification). The rapid progress in metabolomics technique highlights its significant potential for use in customized treatment. We reviewed the unique benefits of metabolomics, including instances in assessing medication treatment and individual stratification, and emphasized metabolomics' promise in personalized medicine.

    Keywords: Personalized Medicine, Metabolomics, Health Care, Drug Sensitivity}
  • Mehrsa Emami *, Farzin Hormozi, Hossein Abedini
    Bulk phase polymerization of propylene with a 4th generation of Ziegler-Natta catalyst was kinetically investigated by means of heat flow calorimetry. The assumptions and modifications on isothermal calorimetric method were demonstrated. Our calibration method showed that heat exchange with the reactor cover plate is not constant over time. Therefore, the dynamic of cover plate temperature was considered in the calorimetric method. The polymerization rate profiles depending on hydrogen and external electron donor concentration have been investigated. Normalized polymerization profiles (Rp /Rpmax) are plotted and expressed as an exponential function of time. Effects of hydrogen and external electron donor (ED) concentration on Rpmax and polymerization rate were investigated as well. The results showed that by increasing hydrogen concentration, initial polymerization rate (Rpmax) increased. Hydrogen increased productivity by increasing the initial polymerization rate, while it had no negative effect on the rates of decay or its effect was small. The ED concentration was optimized so that the catalyst deactivation rate was at its lowest level. Also, changes in the ratio of activation to inactivation with ED concentration were examined, and a proportional change was observed.
    Keywords: kinetic study, calorimetry, liquid monomer, Propylene, polymerization}
  • Mehrsa Emami, Mahmoud Parvazinia *, Hossein Abedini
    Gas phase polymerization of propylene was carried out in a semi-batch minireactor using a commercially supported Ziegler–Natta (ZN) catalyst. The influence of variables including monomer partial pressure, external electron donor, reaction temperature and time on the particle morphology and size distribution was investigated. Generally, more uniform fragmentation and particle densities were obtained at lower reaction rates. Monomer partial pressure showed a significant role of particle size and its distribution, the higher the monomer partial pressure, the broader particle size distribution was obtained. Polymerization pressure had a significant role on the morphology of particles. Wider cracks and more porosity were resulted from the polymerizations at higher pressures. Furthermore, a broader particle size distribution was obtained from the polymerization at higher pressures. The particle size analysis revealed the monomer partial pressure as the most effective parameter on the distribution of particles. The SEM images showed that three different steps could be distinguished in the development of particle morphology within the particle, showing the initiation and development of cracks and appearance of fragments inside the particle.
    Keywords: Propylene polymerization, gas phase, mini, reactor, Ziegler, Natta, particle morphology}
  • مهرسا امامی، الهام آرام، علیرضا مهدویان
    پلیمرها و کامپوزیت های پلیمری به دلیل برخورداری از ویژگی های مختلف از قبیل فرایند پذیری خوب و پایداری شیمیایی در شرایط اتمسفری مختلف، بطور گسترده در بسیاری از زمینه های مهندسی و صنایع مختلف از قبیل نظامی، فضایی و ساختمانی و غیره کاربرد دارند. اما از مشکلاتی که بشر طی استفاده از این مواد با آن روبرو است تخریب آسان آنها به هنگام قرار گرفتن در شرایط ناملایم است. این موضوع سبب افت خواص مکانیکی و کاهش طول عمر مواد پلیمری می شود. ترمیم درجای مواد پلیمری ابتدا نیاز به تشخیص محل تخریب توسط بازدید و یا دستگاه هایی مانند فراصوت و تابش ایکس و سپس فرایند زمان بر ترمیم دارد. در بسیاری از مواد پلیمری که محل آسیب دیده جهت تشخیص واعمال ترمیم دسترس ناپذیر است، خود ترمیمی حائز اهمیت است. بنابراین به دنبال پژوهش و تلاش های زیادی که در این زمینه انجام شده است، دسته جدیدی از مواد هوشمند تحت عنوان مواد خودترمیم شونده تهیه شده اند که توانایی ترمیم خودشان را در هنگام صدمات و آسیب ها بدون نیاز به منبع خارجی دارند. خاصیت خودترمیمی در این مواد منجر به افزایش طول عمرآنها، کاهش هزینه های جایگزینی قطعات جدید و افزایش ایمنی می شود. در این مقاله سعی شده است تا مروری کلی بر انواع مواد ترمیم پذیر و مکانیسم عملکرد آن ها در هنگام رویارویی با صدمات و آسیب ها مرور شود.
    کلید واژگان: پلیمر هوشمند, خود ترمیم شونده, محرک, غیر زاتی, ذاتی}
    Mehrsa Emami, Elham Aram, Alireza Mahdavian
  • Mehdi Nekoomanesh, Mehrdad Aghaei, Nieat, Gholam, Reza Nejabat, Hassan Arabi, Mehrsa Emami
    One of the known groups of mesoporous materials is MCM-41 that has beenextensively used as support for different types of catalysts. In the present work,rod-like MCM-41 was synthesized to support TiCl4/MgCl2/THF catalyst to formthe bi-supported rod-like-MCM-41/TiCl4/MgCl2/THF catalytic system. Then, ethylene polymerization was performed by this synthesized catalytic system under 8bar ethylene pressure. The formation of rod-like semi-crystalline mesoporous MCM-41with relatively high surface area (~972 m2/g) was confirmed by SEM, XRD, and BETstudies. FTIR spectroscopy was used to confirm the omission of the organic template and water from the synthesized MCM-41. Investigating the specific surfacearea of the prepared catalyst by BETanalysis showed that after loading the catalyst onMCM-41support, the surface area is reduced considerably and it is reached a value ofapproximately 486 m2/g. XRD, SEM, and DSC analyses revealed that the synthesizedPE samples contained nano-fibres as their main morphological units. SEM analysisshowed the formation of dense polyethylene fibres with nanometer sized diameters andlengths of about 1 to more than 20 micrometers. DSC analysis showed the high melting point of 144°C for the synthesized PE samples and their crystal structure wasassigned to be orthorhombic by XRD investigations. Finally a relatively high activity of11×104g PE/mol Ti.h was obtained for the catalytic system.
  • Farzin Hormozi, Reza Mehtarani, Ahmad Mirzaei, Mehrsa Emami, Monirossadat Sadati
    Polypropylene/poly(ethylene-co-propylene) in-reactor blends were synthesized by sequential multi-stage polymerization technique using fifth generation of Ziegler-Natta catalyst. Blends of isotactic polypropylene (iPP) (with a minimum isotacticity index (II) of 97.5%) and at least 12% ethylene/propylene copolymer were successfully synthesized. Experimental set-up and polymerization procedure are described in detail. Effect of external electron donor on catalyst behaviour was studied. The results showed that for the catalytic system investigated, using external electrondonor causes a decrease in catalyst hydrogen response and productivity at bothhomo and copolymerization stages and an increase in the ratio between amorphousto crystalline ethylene-propylene copolymer of the blend. Furthermore, increasing theproportion of C2 in the copolymerization stage leads to increase of both polymerization es the amount of ethylene/propylene rubber (EPR) in the blend.
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال