Kinetic study on liquid propylene polymerization using a modified heat flow reaction calorimeter
Author(s):
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Bulk phase polymerization of propylene with a 4th generation of Ziegler-Natta catalyst was kinetically investigated by means of heat flow calorimetry. The assumptions and modifications on isothermal calorimetric method were demonstrated. Our calibration method showed that heat exchange with the reactor cover plate is not constant over time. Therefore, the dynamic of cover plate temperature was considered in the calorimetric method. The polymerization rate profiles depending on hydrogen and external electron donor concentration have been investigated. Normalized polymerization profiles (Rp /Rpmax) are plotted and expressed as an exponential function of time. Effects of hydrogen and external electron donor (ED) concentration on Rpmax and polymerization rate were investigated as well. The results showed that by increasing hydrogen concentration, initial polymerization rate (Rpmax) increased. Hydrogen increased productivity by increasing the initial polymerization rate, while it had no negative effect on the rates of decay or its effect was small. The ED concentration was optimized so that the catalyst deactivation rate was at its lowest level. Also, changes in the ratio of activation to inactivation with ED concentration were examined, and a proportional change was observed.
Keywords:
Language:
English
Published:
Polyolefins Journal, Volume:8 Issue: 2, Summer-Autumn 2021
Pages:
123 to 133
https://magiran.com/p2297495
مقالات دیگری از این نویسنده (گان)
-
Reactor modeling and kinetic parameters estimation for diethylbenzene (DEB) dehydrogenation reactions
M.E Zeynali *, H. Abedini, H. R. Sadri
Iranian journal of chemical engineering, Summer 2019 -
Effect of operating conditions on divinylbenzene production in diethyl benzene dehydrogenation reactor
M. E. Zeynali *, H. Abedini, H. R. Sadri
Iranian journal of chemical engineering, Autumn 2018