به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
فهرست مطالب نویسنده:

mohammadreza madani

  • Mehdi Kazempour Dizaji*, Mohammad Varahram, Atefe Abedini, Rahim Roozbahani, Ali Zare, Payam Tabarsi, Majid Marjani, Afshin Moniri, Niloufar Alizadeh Kolahdozi, Mohammadreza Madani, Parvaneh Baghaei Shiva
    Background & Aims

    There are variables whose influence on the risk of tuberculosis (TB) recurrence change over time. Therefore, this study aimed to assess the time-dependent effects of these variables on the hazard of TB recurrence.

    Materials & Methods

    In this historical cohort study, data were collected from 4,564 TB patients who were referred to the TB research center of Dr. Masih Daneshvari Hospital, Tehran, from 2005 to 2015, in order to evaluate factors affecting the hazard of TB recurrence in terms of time dependency or time constancy. Data were analyzed in STATA 14 software using a statistical test based on Schoenfeld residuals, the time-dependent effects method, and the time-varying effects model (considering time function as f (t) = t).

    Results

    The results showed that only the impact of the variables of drug adverse effects and passive smoker were inconstant over time and had time-dependent effects, and they also influenced the hazard of TB recurrence. Also, the effect of the two mentioned variables on the hazard of TB recurrence displayed a decreasing and increasing trend with time, respectively.

    Conclusion

    Using the time-varying effects model in the study of the hazard of TB recurrence allows evaluating the time-dependent effects of the studied variables and also can differentiate them from the time-independent variables.

    Keywords: Recurrence, Time-dependent effects, Time-varying effects model, Tuberculosis
  • Mehdi Kazempour Dizaji*, Mohammad Varahram, Payam Tabarsi, Rahim Roozbahani, Ali Zare, Afshin Moniri, Mohammadreza Madani, Atefe Abedini, Parvaneh Baghaei Shiva, Majid Marjani, Niloufar Alizadeh Kolahdozi
    Background & Aims

    Diagnosis and treatment of patients with multidrug-resistant tuberculosis (MDR-TB) are very important. Hence, it is necessary to predict and diagnose these patients based on individual, demographic and clinical characteristics before starting treatment. This study aimed to predict MDR-TB in TB patients using the perceptron artificial neural networks (ANNs) model.

    Materials & Methods

    This retrospective cohort study was conducted on 1,050 TB patients who have been treated in Masih Daneshvari Hospital, Tehran, Iran from 2005 to 2015. Data on personal and demographic information, as well as medical data such as drug therapy, final outcome of treatment, and the diagnosis of MDR-TB, were collected from the patients' medical records.

    Results

    The results of this study indicated that the predictive power of MDR-TB for both training and testing groups was 85% and 80%, respectively. Also, the variables of marital status, education, drug use, being imprisoned, extrapulmonary TB, history of comorbidities, AIDS, patients' age, and family size were identified as very effective factors. However, variables of residence, smoking history, contact with a TB person, pulmonary TB, drug side effects, nationality, and diabetes were found as effective factors in predicting the development of MDR-TB.

    Conclusion

    Application of the perceptron ANNs model in the study of MDR-TB is able to create new horizons in the diagnosis of these patients due to high predictive accuracy.

    Keywords: Artificial neural networks, Perceptron, Tuberculosis, Multidrug-resistant tuberculosis
  • مهدی کاظم پور دیزجی، حمیدرضا جماعتی، نغمه بهرامی، بهروز فرزانگان، مهسا رکابی، مجتبی مخبر دزفولی، جلال حشمت نیا، محمدرضا معدنی، مهیا داستانی، صادق شیریان، لادن معصومی، امیر قائمی، آرمیتا نریمانی، مهران خاکباز، عبدالرضا محمدنیا*، محمد ورهرام، علی اکبر ولایتی
    زمینه و اهداف

      بیماری کووید-19 یک بیماری عفونی نوظهور است که در دسامبر 2019 در شهر ووهان چین ظاهر شد. پاسخ التهابی سیستمیک کنترل نشده یکی از مکانیسم های اولیه مرگ در این بیماری است. در این مطالعه، میزان بیان برخی از سایتوکاین های التهابی، ویتامین D و برخی پارامترهای هماتولوژیک و بیوشیمیایی در بیماران مبتلا به کووید-19 شدید و انواع خفیف مقایسه شد.

    مواد و روش کار

      در این مطالعه مقطعی، 60 نمونه خون از 30 بیمار مبتلا به کروناویروس شدید و 30 بیمار خفیف کرونا گرفته شد. سطح بیان سیتوکین هایی مانند IL (اینترلوکین)-6، اینترفرون (IFN)-α، IL-12، فاکتور رشد تبدیل کننده (TGF) β، IL-8 و فاکتور نکروز تومور (TNF)-α با استفاده از Real- ارزیابی شد. زمان PCR برای تجزیه و تحلیل آماری از آزمون تی استفاده شد.

    یافته ها

      سیتوکین های IL-6، IFN-α، IL-12، TGF-β، IL-8 و TNF-α در خون محیطی بیماران شدید، به ترتیب در 28/30 (93/33%)، 27/30 (90%)، 24/30 (80%)، 25/30 (83/33%)، 26/30 (86/66%) و 27/30 (90%) مثبت بودند. میزان مثبت این سیتوکین ها در بیماران خفیف به ترتیب 20/30 (66/67%)، 21/30 (70%)، 18/30 (60%)، 17/30 (56/67%)، 19/30 (63/33%) و 18/30 (60%) بود. بین این دو گروه از نظر بیومارکرهای سیتوکین تفاوت آماری معنی داری وجود داشت. تفاوت معنی داری بین هر دو گروه از نظر سطح سرمی لاکتات دهیدروژناز (LDH)، میانگین تعداد لنفوسیت ها و نوتروفیل ها و همچنین میانگین درصد نسبت نوتروفیل به لنفوسیت (NLR) مشاهده شد.

    نتیجه گیری: 

     بیان ژن های سیتوکین و آزادسازی آن ها در خون محیطی در بیماران شدید و خفیف مبتلا به کووید-19 افزایش یافت. با این حال، شدت آنها در بیماران با علایم شدید نسبت به بیماران با علایم خفیف بیشتر بود و می تواند باعث واکنش های التهابی و حتی مخرب شود. کمبود ویتامین D هیچ نقشی در ایجاد COVID-19 شدید در بیماران بدون عوامل خطر ندارد. کووید-19 شدید با افزایش سطح سرمی LDH و NLR≥3.45 مشخص می شود.

    کلید واژگان: COVID-19 شدید, COVID-19 خفیف, ARDS, بیان سیتوکین
    Mehdi Kazempour Dizaji, Hamidreza Jamaati, Naghmeh Bahrami, Behrooz Farzanegan, Mahsa Rekabi, Mogtaba Mokhber Dezfuli, Jalal Heshmat Nia, Mohammadreza Madani, Mahya Daustani, Sadegh Shirian, Ladan Masoumi, Amir Ghaemi, Armita Narimani, Mehran Khakbaz, Abdolreza Mohamadnia*, Mohammad Varahram, AliAkbar Velayati
    Background and Aim

     The COVID-19 disease is an emerging infectious disease that appeared in December 2019 in Wuhan, China. An uncontrolled systemic inflammatory response is one of the primary mechanisms causing death in this disease. In this study, the expression levels of some inflammatory cytokines, vitamin D, and some hematological and biochemical parameters were compared in patients with severe COVID-19 and mild types.

    Materials and Methods

     In this cross-sectional study, 60 blood samples were taken from 30 severe coronavirus patients and 30 mild coronavirus patients. The expression levels of cytokines such as IL (interleukin)-6, interferon (IFN)-α, IL-12, transforming growth factor (TGF) β, IL-8 and tumor necrosis factor (TNF)-α were evaluated using Real-time PCR. A T-test was used for Statistical Analysis.

    Results

    IL-6, IFN-α, IL-12, TGF-β, IL-8, and TNF-α cytokines in the peripheral blood of severe patients, were positive in 28/30 (93.33%), 27/30 (90%), 24/30 (80%), 25/30 (83.33%), 26/30 (86.66%), and 27/30 (90%) respectively. The positive rate of these cytokines in the mild patients were 20/30 (66.67%), 21/30 (70%), 18/30 (60%), 17/30 (56.67%), 19/30 (63.33%), 18/30 (60%), respectively. There was a statistically significant difference between these two groups in terms of cytokines biomarkers. A significant difference was found between both groups in terms of the serum level of lactate dehydrogenase (LDH), the mean number of lymphocytes and neutrophils as well as the mean percentage of neutrophils/ lymphocytes ratio (NLR).

    Conclusion

     The expression of cytokine genes and their release into the peripheral blood was increased in both severe and mild patients with COVID-19. However, they were more intense in patients with severe symptoms than those with mild symptoms and can cause inflammatory and even destructive reactions. Vitamin D deficiency plays no role in causing severe COVID-19 in patients without risk factors. Severe COVID-19 is characterized by elevated serum levels of LDH and NLR≥3.45.

    Keywords: severe COVID-19, Mild COVID-19, ARDS, Cytokine expression
  • Mehdi Kazempour Dizaji*, Afshin Moniri, Rahim Roozbahani, Mohammad Varahram, Payam Tabarsi, Ali Zare, Parvaneh Baghaei Shiva, Atefe Abedini, Majid Marjani, Mohammadreza Madani, Arda Kiani, MohammadAli Emamhadi, Niloufar Alizadeh Kolahdozi
    Background & Aims

    Today, due to progressing technology and improving the standard of living of humans, the study of diseases has become more complex. This complexity has led to using new methods, such as the model of artificial neural networks (ANNs), to study many chronic diseases, especially tuberculosis (TB). The present study aimed to investigate the mechanism of disease relapse events by applying a multilayer perceptron artificial neural network (MLP-ANN) model among TB patients.

    Materials & Methods

    This retrospective cohort study examined information of 4,564 TB patients treated in Masih Daneshvari Hospital, Tehran, Iran, from 2005 to 2015. TB disease relapse was considered as a study event, and the relapse mechanism was investigated using an MLP-ANN model consisting of three layers.

    Results

    Based on an MLP-ANN model comprising three layers, the power to accurately predict disease relapse in TB patients was 96%. Also, variables of family size, adverse effects of exposure to cigarette smoke, patient age, and education as very effective factors, and marital status, history of drug use, imprisonment, pulmonary TB, diabetes, and AIDS as effective factors were identified in predicting the mechanism of TB disease relapse.

    Conclusion

    Using an ANN model in the study of TB relapse due to its flexibility and high predictive accuracy can clarify any ambiguous aspects of this disease.

    Keywords: Artificial neural networks, Perceptron, Relapse, Tuberculosis
  • Mehdi Kazempour-Dizaji *, Mohammad Varahram, Payam Tabarsi, Rahim Roozbahani, Ali Zare, MohammadAli Emamhadi, Majid Marjani, Atefe Abedini, Afshin Moniri, Mohammadreza Madani, Parvaneh Baghaei Shiva
    Background

    The success of treatment strategies to control the disease relapse requires determining factors affecting the incident short-time and long-time of disease relapse. Therefore, this study was aimed to identify the factors affecting of short-and long-time of occurrence of disease relapse in patients with tuberculosis (TB) using a parametric mixture cure model.

    Materials and Methods

    In this historical cohort study; the data was collected from 4564 patients with TB who referred to the Tuberculosis and Lung Diseases Research Center of Dr. Masih Daneshvari Hospital from 2005 to 2015. In order to evaluate the factors affecting of short-and long-time of occurrence of disease relapse, a parametric mixture cure model was used.

    Results

    In this study, the estimation of the annual incidence of TB relapse showed that the probability of recurrence in the first year is 1% and in the third and tenth years after treatment is 3% and 5%, respectively. In addition, the results of this study showed that the variables of residence, exposure to cigarette smoke, adverse effects of drug use, incarceration, and pulmonary and extra- pulmonary tuberculosis were the factors affecting the short-time recurrence of TB. The variables of drug use, pulmonary and extra- pulmonary tuberculosis, and also incarceration affected the long-term recurrence of this disease.

    Conclusion

    Cure models by separating factors affecting the short-time occurrence from the long-time occurrence of disease relapse can provide more accurate information to researchers to control and reduce TB relapse.

    Keywords: tuberculosis, Relapse, Risk Factors, Parametric mixture cure model
  • Mehdi Kazempour Dizaji*, Majid Marjani, Payam Tabarsi, Mohammad Varahram, Ali Zare, MohammadAli Emamhadi, Rahim Roozbahani, Atefe Abedini, Parvane H Baghaei Shiva, Afshin Moniri, Mohammadreza Madani
    Background & Aims

     The development of treatment methods and increasing the survival of patients with tuberculosis (TB) has led to the complication of relationships between independent and dependent variables associated with this disease. Therefore, it is important to use new methods to model the TB process that can accurately estimate the current situation. This study aimed to model the survival of patients with tuberculosis based on the model of perceptron artificial multilayer neural network (MLP-ANN).

    Materials and Methods

    In this retrospective cohort study, the data was collected from 2366 TB patients who were treated in Dr. Masih Daneshvari Hospital in Tehran from 2005 to 2015. To model the predictive power of survival in TB patients, an MLP-ANN model consisting of three layers was applied.

    Results

    The results of this study showed that based on the MLP-ANN model, the correct predictive power of survival in TB patients is 88.4%. In this study, the variables of patients' age and family size as very effective variables also variables of patients’ gender, marital status, education, adverse drug effects, exposure to cigarette smoke, imprisonment, pulmonary tuberculosis, and AIDS as effective variables in predicting the survival of patients were diagnosed.

    Conclusion

    In the model of artificial neural networks, no restrictions are considered for the data structure and the type of relationship between variables. Therefore, these models with their flexibility and high accuracy can be one of the best methods for modeling health data.

    Keywords: Perceptron artificial neural network, Survival, Tuberculosis, Modeling
  • امیر مردانی*، امیر آقابیگی، محمدرضا معدنی، علیرضا رمضانی
    در این مقاله، به بررسی مدل   سازی خنک کاری فیلمی یک موتور رانشگر فضایی 10 نیوتنی برای دو حالت پروفیل دمایی پیش فرض دیواره و نیز لحاظ انتقال حرارت در داخل دیواره پرداخته شده است. مطالعه برای چهار نوع مدل فیلم گاز غیرواکنشی، فیلم گاز واکنشی، فیلم مایع غیرواکنشی و فیلم مایع واکنشی انجام شده است. برای مدل سازی واکنش های شیمیایی، مکانیزم شیمیایی برای مونو متیل هیدرازین و نیتروژن تتروکسید گردآوری و کاهش داده شده است. بررسی نتایج نشان می دهد که مکانیزم توسعه داده شده با 43 گونه شیمیایی و 174 واکنش شیمیایی قابلیت  مدل سازی تجزیه مونو متیل هیدرازین در لایه مرزی خنک شونده را دارد و دمایی با دقت 5 درصد در مقایسه با سایر مراجع برای احتراق مونو متیل هیدرازین و نیتروژن تتروکسید پیش بینی می کند. برای مدل سازی جریان خنک کننده، در دو حالت مدل سازی فیلم گازی و فیلم مایع، لایه سوخت گازی در دمای تبخیر مربوط به فشار محفظه و یا جریان قطرات سوخت در دبی های گوناگون به سطح تزریق شده و پارامتر های انتقال حرارت به دیواره گزارش شده اند. بر روی دبی خنک کن مطالعه پارامتریک صورت گرفته و اثر آن بر خنک کاری بررسی شده است و پروفیل شار گرمایی محاسبه شده با پروفیل شار گرمایی حاصل از روابط تحلیلی مقایسه شده است. نتایج حاکی از آن است که برای خنک کاری در کامل ترین حالت مدل سازی (فیلم مایع واکنش دهنده) با تزریق 10% سوخت به عنوان خنک کن، شار گلوگاه در حدود 25% و با تزریق 20% سوخت، در حدود 48% قابل کاهش است. همچنین، نتایج نشان می دهد که برای حالتی که انتقال حرارت در ضخامت دیواره لحاظ شود، تزریق حدود 20% سوخت نتیجه نزدیکی را به منحنی دمای تجربی دیواره به دست می دهد.
    کلید واژگان: خنک کاری, جریان دوفازی, فیلم خنک کن مایع, هایپرگولیک, رانشگرهای فضایی
    Amir Mardani *, Amir A.Beige, Mohammadreza Madani, Alireza Ramezani
    In this work, film cooling of a 10N thrust chamber is investigated using different numerical models. The thruster is modeled by feeding gas at a chemical equilibrium state from the inlet. Heat flux is computed for different flow rates of the coolant and is compared to the analytical Bartz equation for the no coolant case. In the second part, solid wall heat conduction is modeled, and the computed wall temperature profile is compared to the available experimental data. Chemical dissociation of MMH in the coolant layer is modeled by constructing a chemical mechanism for the reactions of Methyl Hydrazine with Nitrogen Tetroxide. Chemical reactor modeling shows a close prediction to other available data for the combustion of MMH/NTO system. To assess the effect of different cooling mechanisms in the coolant layer, different approaches for heat transfer modeling with different levels of complexity are investigated in this paper. The considered models include cold gas, reactive gas, cold droplets, and a reactive evaporating layer of droplets. For the most sophisticated model considered (reactive evaporating layer of droplets), a 48% reduction of heat flux is computed at the throat when 20% of the fuel is used as the coolant. Also, when solid wall heat conduction is considered, the computed wall temperature profile is closest to the experimental data for the case of 20% of the fuel as coolant.
    Keywords: Film Cooling, Thruster, Hypergolic, Two-phase Flows
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال