جستجوی مقالات مرتبط با کلیدواژه "temporal" در نشریات گروه "جغرافیا"
تکرار جستجوی کلیدواژه «temporal» در نشریات گروه «علوم انسانی»-
پژوهش حاضر با هدف برآورد فرسایش خاک در مقیاس های زمانی و مکانی مختلف با مدل G2 به تفکیک کاربری ها/پوشش های اراضی بزرگ آبخیز دریای خزر انجام شده است. به منظور تهیه نقشه های فرسایش خاک منطقه مورد مطالعه، عوامل ورودی مدل G2 در مقیاس های مکانی و زمانی مناسب با استفاده از داده های هواشناسی، تصاویر ماهواره ای، GIS و سنجش از دور تهیه گردید. نتایج نشان داد که میانگین فرسایش خاک سالانه برای منطقه مورد مطالعه برابر با 24/11 تن بر هکتار گزارش شده است که بیش ترین مقدار آن در استانهای آذربایجان غربی، مازندران، خراسان شمالی و آذربایجان شرقی قرار دارد. از طرفی بیش ترین مقدار آن در ماه های نوامبر، اکتبر، آوریل و می به ترتیب برابر با 49/1، 48/1، 32/1 و 27/1 و کم ترین مقدار آن در ماه های اوت و دسامبر به ترتیب برابر با 54/0 و 59/0 تن بر هکتار برآورد شده است. به طوری که بیش ترین مقدار میانگین فرسایش خاک سالانه نیز به ترتیب در کاربری ها/پوشش های مرتع، درختچه زار، اراضی بایر و جنگل نیمه متراکم برابر با 87/16، 96/15، 51/11 و 22/11 تن بر هکتار است. در نتیجه مقادیر فرسایش خاک سالانه در بخش های غربی، مرکزی و شرقی به ترتیب برابر با 94/11، 47/13 و 53/10 تن بر هکتار برآورد شد. اگرچه اختلاف فرسایش خاک در مقیاس های زمانی ماهانه، فصلی و سالانه در تمام کاربری ها/پوشش های مختلف اراضی در سطح 99 درصد معنی دار است، اما در تعدادی از کاربری ها/پوشش های اراضی بزرگ آبخیز دریای خزر در بخش های غربی-مرکزی، مرکزی-شرقی و غربی-شرقی با هم معنی دار نیست. بنابراین نتایج به دست آمده از مدل G2 شامل میانگین ماهانه، فصلی و سالانه فرسایش خاک برای بزرگ آبخیز دریای خزر و 108 زیرآبخیز به تفکیک، توسط سیاست گذاران نه تنها برای اولویت بندی زیرآبخیزها، بلکه برای افزایش دانش آن ها در مدیریت یکپارچه آبخیز و بهره برداری پایدار منابع خاک و آب استفاده خواهد شد.
کلید واژگان: تخریب خاک, ضریب اصلاحی پوشش برف, کاربری, پوشش اراضی, مقیاس زمانی و مکانی, مدیریت آبخیزIntroductionSoil erosion in Iran is one of the most important problems of drainage basins that can be mentioned as main barriers to the sustainable development of agriculture, geoscience, and natural resources. Therefore, soil erosion control is one of the most urgent environmental issues which need to identify in erosion-prone areas in the watersheds. In many watersheds, the role of land use in soil erosion is greater than of other factors. Knowing the contribution of different types of land use to soil erosion leads to managing land use and reducing the severity of soil erosion, and even increasing the income of the watershed stakeholders. Evaluation and identification of soil erosion in coastal regions are one of the most important measures for comprehensive coastal management. Therefore, the current research was carried out with the aim of estimating soil erosion in different temporal and spatial scales with the G2 model, according to the land use/land covers of the Caspian Sea basin.
MethodologyThe northern region of Iran encompasses the Caspian Sea basin, which spans approximately 91,176 km2, equivalent to around 10% of the country’s total area. It is situated between latitudes 45°39'-35'N and longitudes 59°59'-44'E. With an average elevation of 1,195 m, the watershed exhibits significant variation, ranging from the highest point at Mount Damavand with an elevation of 5,699 m to the lowest point along the Caspian Sea coast at -28 m. The Caspian Sea basin is divided into seven primary basins and further subdivided into 108 sub-basins using the Strahler stream ordering method. In order to prepare soil erosion map in the study area, the input factors of G2 model were prepared in appropriate spatial and temporal scales using meteorological data, satellite images, application of GIS and RS. The G2 model combines five input erosion parameters in a multiplicative equation to produce month-time step maps and statistics of soil erosion. Ideally, a single layer suffices for S, T, and L factors, while a collection of 12 layers (one for each month) is required for the dynamic factors R and V. Also, the values of soil erosion were estimated for different types of land uses/covers in different time scales for the Caspian Sea basin.
Results and DiscussionThe results showed that the average annual soil erosion for the study area is reported to be 11.24 t ha-1, the highest soil erosion rates observed in the West Azarbaijan, Mazandaran, North Khorasan, and East Azarbaijan provinces. On the other hand, the highest monthly soil erosion with the rates of 1.49, 1.48, 1.32, and 1.27 t ha-l were in November, October, April and May, and the lowest monthly soil erosion with the rates of 0.54 and 0.59 t ha-1 were in August and December, respectively. The highest amount of soil erosion occurred in autumn and spring compared to winter and summer. One of the reasons for the increase in soil erosion in the autumn season is the high intensity of rainstorms that occur in lands with little vegetation and in the spring season, may be due to the increase in rainfall and snow melting in this season and its effect on the increase of soil erodibility. Also, minimal soil erosion in summer and winter seasons can be caused by the decrease in the amount and intensity of rainfall or the absence of effective rainfall. In addition, it was found that with the increase of rainfall erosivity, soil erosion increased on a monthly time scale. The highest annual soil erosion with the rates of 16.87, 15.96, 11.51, and 11.22 t ha-1 were in rangeland, shrubland, barren lands and forest II, respectively. As a result, annual soil erosion values in the western, central, and eastern parts were estimated equal to 11.94, 13.47, and 10.53 t ha-1, respectively. Although the difference of soil erosion in monthly, seasonal and annual time scales in all different land use/land covers is significant at the 99% level, but it is not significant in a number of large land use/land covers in the Caspian Sea basin in the western-central, central-eastern and western-eastern parts.
ConclusionAccording to the current research, 40.53% of the lands in the studied area have soil erosion of less than 1 t ha-1 yr-1, which are in the range of low erosion, because this amount of wastage is almost equal to the annual soil construction limit and is normal, and these areas do not need watershed operations and the risk of soil erosion is low. While about 18.73% of the land surface of the studied area, soil erosion exceeds 20 t ha-1 yr-1, and it is recommended that in these areas, in addition to biological operations, mechanical operations are also performed to reduce and control soil erosion. The results obtained from the present research provide managers and policymakers with information and appropriate decision-making bases for the management and sustainable use of soil and water resources.
Keywords: Land, Cover Use, Snow Cover Correction Coefficient, Soil Degradation, Temporal, Spatial Scale, Watershed Management -
دمای هوا یکی از متغیرهای مهم آب و هواشناسی است و تغییرات شدید در متغیرهای دمایی، موجب افزایش احتمال وقوع پدیده های حدی نظیر خشکسالی، بارش های سنگین و طوفان می شود. روش رگرسیون چندک این توانایی را دارد که با بررسی روند چندک های مختلف توزیع، تغییرات در سطوح مختلف پارامتر را در طول زمان مشخص کند. در این پژوهش، تغییرات زمانی و مکانی از کمینه و بیشینه دما در پهنه ی جغرافیایی ایران بررسی قرار گرفت. روش رگرسیون چندک بر روی چندک های مختلف از سری زمانی داده های کمینه و بیشینه دمای روزانه 102 ایستگاه هواشناسی در دوره 30 ساله (1396-1367) اجرا گردید و نتایج آن با استفاده از روش های مختلف درون یابی در محیط GIS به منظور انتخاب بهترین روش درون یابی پهنه بندی شد. نتایج پهنه بندی مکانی شیب های چندک موردنظر با استفاده از روش های مختلف درون یابی نشان داد که روش درون یابی بیزین کریجینگ تجربی دارای کمترین مقدار RMSE می باشد. همچنین نتایج نشان داد که روش رگرسیون چندک، روندهای افزایشی معنی دار با شیب های متفاوتی را برای متغیرهای کمینه و بیشینه دما در چندک های مختلف و برای بخش های مختلف از ایران در طول 30 سال نشان داده است؛ بیش ترین روندهای افزایشی برای مقادیر بسیار پایین از کمینه دما در نیمه ی غربی، مقادیر میانه در نیمه ی شرقی و مقادیر بسیار بالا در نیمه ی غربی، شرق و بخش مرکزی ایران بوده است. در مقابل، بیش ترین روندهای افزایشی برای مقادیر بسیار پایین از بیشینه دما در شمال غربی، مقادیر میانه در نیمه ی شرقی، غرب و بخش مرکزی، و مقادیر بسیار بالا در نیمه ی شمالی ایران دیده شده است. و به طور کلی می توان بیان کرد که دمای ایران در اثر تغییر اقلیم افزایش یافته و روش رگرسیون چندک برای بررسی و کنترل دماهای بسیار بالا و بسیار پایین که در مطالعات خطر آب و هوایی اهمیت بیش تری نسبت به دمای میانگین دارند، مفید می باشد.
کلید واژگان: دما, رگرسیون چندک, روند مکانی و زمانی, GIS, ایرانIntroductionTemperature is one of the most important meteorological variables and any change in temperature variable causes changes in the occurrence of extreme phenomena such as drought, heavy rainfall, and storms that will cause irreparable damage in various social, economic, and agricultural sectors. Therefore, it is important to study the trend of these climatic variables in order to achieve methods for controlling and managing damages. Methods based on the mean or median of the data are generally used in studies related to trend investigation, since mean is a measure of central tendency, if studied alone may not provide information about trend variation in different parts of meteorological and hydrological data distribution, especially distribution tails. While extreme weather events often result from extreme values of climatic parameters. For this purpose, to study trend variation in the different data ranges, the quantile regression method was proposed, which has no limitations of previous parametric and nonparametric methods and has the ability to study trend variation and Show changes in different quantiles or different values of a climatic parameter. Therefore, the purpose of this study is to investigate the trend of temporal and spatial changes of minimum and maximum temperature on an annual scale using the quantile regression method in the geographical area of Iran.
Materials and methodsThe study area in the present study is the geographical area of Iran, which due to its location in the middle latitudes of 30 degrees, most of its area is covered by arid and semi-arid climates. In order to analyze a trend, maximum and minimum daily temperature data of 102 meteorological stations with a statistical period of 30 years (1988-2017) were obtained from the Meteorological Organization. After preparing the data, the annual time series was formed from the minimum and maximum temperature for this period of 30 years. Then the quantile regression method was used to analyze the trend variation in different quantiles of minimum and maximum temperature and the estimated slopes for the whole country were zoned using different interpolation methods in the GIS environment after that the Bayesian kriging interpolation method was selected for interpolation and the results were analyzed.
Results and discussionThe results showed that the quantile regression method showed different trends for the minimum and maximum temperature variables in different quantiles and for different parts of Iran during the year. In general, both temperature variables had an increasing trend in all studied quantiles for all parts of Iran; Lower quantiles of the minimum temperature have an increasing trend in most parts of Iran and the most increasing trend slopes have been observed in the western half of the country, and about 63% of the area of Iran had a positive slope of 5-10%. While in the median quantile, the trend variation is more severe and all regions of Iran have a significant increasing trend that has been significant in most regions. in general, about 73% of the regions have a slope of 5-10%, which is visible in the western half, northeast, and southeastern parts and about 24% of the areas have a slope of 10-15% which is seen in eastern Iran. However, upper quantiles of minimum temperature that indicate high-temperature values also have a positive and significant trend in most parts of Iran, which in general 69% of the regions have a trend slope of 2-5%, which is located in the eastern half, north and south of the country, while 29% of Iran's area has a slope of 5-10%, which is mainly located in the western half and parts of the east and center of the country. However, in the study of the lower quantiles of the maximum temperature, the trend variation was more than the minimum temperature and there were significant increasing trends in most parts of Iran that 47% of the area had a slope of 2-5% which is located in the eastern half of Iran, and also 43% and 10% of the area of Iran had a slope of 5-10 and 10-15 %, respectively, which were observed in the western half of the country, but the number of increasing slopes was higher in the west. The median quantiles of the maximum temperature have a slope of 5-10% in 73% of the area, and 24% of the areas have a slope of 10-15%, which was significant in all cases. However, for the upper quantiles of the maximum temperature, trend variation was not significant, so that 64% of the area had a slope of 2-5% in the southern half and 36% of the areas had a slope of 5-10% in the northern half of Iran.
ConclusionThe most increasing trends for low values of minimum temperature were in the western half, median values in the eastern half, and high values in the western half, east and central part of Iran. In contrast, the highest upward trends for low values of maximum temperature are obtained in the northwest, median values in the eastern, western, and central half, and high values in the northern half of Iran. trend slopes for both minimum and maximum temperature have been higher in the median quantile and in general, it can be inferred that the temperature in Iran has increased due to climate change and the quantile regression method is useful to study and control very high and very low temperatures that are more important than the average temperature in climate risk studies.
Keywords: Temperature, quantile regression, Temporal, Spatial Trend, GIS, Iran -
ارزیابی پتانسیل سیل خیزی حوضه های آبریز مختلف از اقدامات مهم در زمینه کاهش خسارت های ناشی از سیل بشمار می رود. حوضه آبریز کرگان رود به عنوان یکی از حوضه های سیل خیز استان گیلان، در سال های اخیر همواره خسارت های فراوانی را به ساکنین منطقه تحمیل کرده است. از همین رو تحقیق جاری به دلیل خلاء مطالعاتی در این حوضه، اقدام به پهنه بندی خطر وقوع سیل نموده و به همین منظور از مدل AWBM و روش Fuzzy-ANP استفاده شده است که مقادیر به دست آمده از مدل سازی AWBM، روند رواناب را از لحاظ زمانی در سال های 2011، 2014، 2017 و اواخر 2018 صعودی برآورد نموده و با سیل های سال 90، 93، 96 و 97 برابری می کند. در پهنه بندی مکانی خطر وقوع سیل از 10 فاکتور موثر شامل: بارش، دما، فاصله از رودخانه، شیب، جهت شیب، ارتفاع، کاربری اراضی، پوشش گیاهی، زمین شناسی و خاک استفاده شد. در تحلیل نتایج بیش ترین خطر سیل خیزی در نواحی جنوبی و خروجی حوضه به دریای خزر برآورد شده که سکونت در حریم رودخانه، عدم توجه به آبخیزداری، تخریب جنگل و مراتع و تغییر کاربری اراضی از جمله مهم ترین عوامل موثر در این مسیله به شمار می آیند. در مجموع 90/3 درصد از مساحت حوضه دارای بیش ترین خطر وقوع سیل از نظر مکانی محاسبه شده است.
کلید واژگان: پهنه بندی زمانی و مکانی, روش Fuzzy-ANP, سیل خیزی, مدل AWBMEvaluating the flood potential of different watersheds is one of the important measures in the field of reducing damages caused by floods. As one of the flood-prone basins of Gilan province, the River catchment has always caused a lot of damage to the residents of the region in recent years. Therefore, due to the lack of studies in this basin, the current research has attempted to zonate the risk of flooding, and for this purpose, the AWBM model and the Fuzzy-ANP method have been used. , 2014, 2017 and the end of 2018 are estimated to increase and equal to the floods of 1990, 1993, 199, and 1997. In the spatial zoning of flood risk, 10 effective factors incluincludingecipitation, temperature, distance from the river, slope, slope direction, height, land use, vegetation, geolo and soil were used. In the analysis of the results, it is estimated that the highest risk of flooding is in the southern areas and the outlet of the basin to the Caspian Sea, and the settlement in the river, lack of attention to watershed management, destruction of forests and pastures, and land use change are among the most important factors affecting this issue. In total, 90.3% of the area of the basin has the highest risk of flooding from a geographical point of view.
Keywords: Temporal, Spatial Zoning, Flooding, AWBM Model, Fuzzy-ANP Method -
یکی از مهمترین نگرانی ها جهان امروز بحث در خصوص تغییرات آب و هوایی و پیامدهای ناشی از آن است. هدف از این پژوهش بررسی تغییرات زمانی مکانی شاخص کمبود آب TSDI در استان خوزستان است. در این پژوهش از داده های ایستگاه هواشناسی مقادیر بارندگی ماهانه و داده های ناهنجاری های کلی ذخیره آب (TWSA) حاصل از ماهواره GRACE-CSR در بازه ی (2016-2002) استفاده گردید. سپس با استفاده از مقادیر بارش ماهانه شاخص بارش استاندارد (SPI) و با استفاده ازمقادیر TWSA شاخص کمبود ذخیره کلی (TSDI) محاسبه گردید. نتایج نشان داد خشکسالی از سال 2008 شروع و تا سال 2016 ادامه داشته، که در این بین سال 2009در SPI-24 ماهه با قرار گیری 68% از مساحت منطقه در طبقه خشکسالی شدید به عنوان شدیدترین سال از نظر خشکسالی شناخته شده. شروع مقادیر سالانه شاخص کمبود آب در سال 2008 و پایان آن سال 2016 بوده که در این بین سه خشکسالی مشاهده شد. سال 2012 با مقدار5.66- در طبقه بسیار شدید. هر چه از سال 2008 به سال 2016 نزدیک شویم شدیدتر می شود. درصد همبستگی بین شاخص های SPI-12 و SPI-24 با شاخص TSDI به ترتیب برابر با 0.54 و 0.73 است. با توجه به این ضرایب شاخصSPI-24 ماهه بیشترین درصد همبستگی را با شاخص TSDI داشته است.
کلید واژگان: کمبود آب, تغییرات زمانی و مکانی شاخص کمبود ذخیره کلیTSDI, شاخص بارش استاندارد شدهSPI, استان خوزستانAnalysis of temporal-spatial changes of water deficit index in Khuzestan province in the last decadeIntroductionDrought as a long-term stage of water scarcity is a challenging issue in water resources management and a very widespread natural disaster. Being aware of the drought situation can significantly reduce the risk of losses caused by this phenomenon through predicting and zoning the severity of the drought. One method of determining drought is the Standardized Precipitation Index (SPI), which was proposed by (McKay et al., 1993), for drought monitoring in the Colorado area. The SPI index is one of the appropriate indices to be used due to its advantages in the regional analysis of drought and the temporal relationship between events.
Materials and methodsFirst, TWSI data were downloaded from GRACE-CSR satellite. The TWSI data obtained from GRACE satellite were received using coding in Google Earth engine in EXCEL format and were provided for the entire province of Khuzestan. Since the TSDI index provides a comprehensive picture of drought, TSDI values had to be calculated after reviewing the TWSA data from Google Earth Engine. To calculate this index, TSD and cumulative TSD values were calculated first. Then, the total water shortage was calculated cumulatively. In addition, the 15-year SPI index (2002-2006) was used to study drought in Khuzestan province in this study. To do this, from the stations that had better conditions in terms of data, 11 stations were selected and SPI-6-12-24 was obtained through DIP software for each of the selected stations on a monthly and annual basis.
Results and DiscussionDrought study of SPI-12-24 in Khuzestan province showed that the onset of drought in this province started in 2008 or 2009 and continued until 2013 or 2016. Among all the stations, 2009 and 2012 were the most severe years in terms of drought and in most of the stations in SPI-12-24 these two years were the driest years in the drought periods, and they were in drought conditions in all these stations during these two years. In terms of drought severity, Safi Abad, Omidiyeh, Ahvaz and Abadan stations were all ranked first to fourth with very severe drought. With regard to time, November and January in SPI-12 with frequency of 4 and May, July, August and September in SPI-24 were the most affected by standard precipitation drought. The TWSA values for Khuzestan province from 2002 to 2016 showed that according to this figure, the value of TWSA in this area found a negative trend from April 2008 to December 2016. in Khuzestan province from 2008 to 2016, three dry periods were observed, which are from April 2008 to January 2010, April 2010 to January 2014 and May 2014 to December 2016. The lowest TWSI values in each period were -11.27, -13.03, and -10.58 mm.
ConclusionIn this study, spatial-temporal changes of TSDI water deficit index in Khuzestan province were investigated. To do this, first the monthly index SPI-12-24 was calculated using the monthly rainfall values of 11 meteorological stations for the whole region in the period 2002 to 2016 using the DIP software. Then, to calculate the TSDI index, the data of total water storage anomalies obtained from GRACE-CSR satellite were used. Drought survey of SPI-12-24 in Khuzestan province showed that drought in this province started in 2008 or 2009 and continued until 2013 or 2016. Among all the stations, 2009 and 2012 were the most severe years in terms of drought, and in most stations in SPI-12-24 were the driest years in the drought periods. In terms of severe drought, Safiabad, Omidieh, Ahvaz and Abadan stations all ranked first to fourth with very severe drought. November and January in SPI-12 and August and September in SPI-24 were mostly affected by standard rainfall drought, with 2% of the area in normal condition, 27% in moderate drought condition, 68% in severe drought condition and 3% in a very severe drought situation, meaning that most of Khuzestan province was covered by severe and very severe drought. The study of water shortage in Khuzestan province showed that in Khuzestan province, August, January, and April were the most affected by water shortage and August with -6/89, the driest month in the whole statistical period was studied, which according to the classification The TSDI index is in a very strong category. In terms of seasonality in winter, due to the fact that the amount of groundwater was strengthened in this season, its amount changes sinusoidally and sometimes it was in a moderate position and sometimes in a very severe category. Among the seasons, autumn had the least changes compared to the other seasons and was located in the middle to upper class.
Keywords: water scarcity, temporal, spatial changes of TSDI general stock deficit index, SPI standardized precipitation index, GRACE satellite, Khuzestan province -
در پژوهش حاضر به واکاوی همدیدی و ترمودینامیکی وقوع طوفان های تندری در فلات ایران پرداخته شد. بدین منظور از داده های مربوط به روزهای همراه با طوفان تندری 20 ایستگاه همدید و داده های hgt، omega و shum در دوره آماری (2010-2015) استفاده شد. سپس با استفاده از نرم افزار GrADS نقشه های همدیدی لازم در سطح مختلف جو تهیه و تحلیل گردید. جهت بررسی ترمودینامیکی نیز از نمودارهای Skew-t و شاخص های CAPE و PWAT استفاده شد. نتایج نشان داد که از نظر ماهانه، از شهر جیرفت در استان کرمان به سمت عرض های بالا در ماه های آوریل و می، بیشترین فراوانی طوفان تندری وجود دارد و به طرف عرض های پایین تر از ماه دسامبر تا فوریه فراوانی طوفان های تندری بیشتر است. از نظر فصلی نیز در نیمه شمالی منطقه مورد مطالعه بیشترین رخداد در فصل بهار و در نیمه جنوبی منطقه، بیشترین رخداد در زمستان اتفاق می افتد در مجموع در همه مناطق مورد مطالعه در طول سال کم و بیش رخداد طوفان تندری وجود دارد. نتایج حاصل از واکاوی همدیدی نیز نشان داد که در روزهای همراه با طوفان تندری، امگای منفی و صعود و ناپایدار هوا حاکم بوده و از سوی دیگر، نفوذ رطوبت به جو منطقه و قرارگیری در زیر سرد چال ها و جلوی ناوه، شرایط را برای رخداد این پدیده فراهم می کند. بررسی نمودارهای skew-t و شاخص های CAPE و PWAT نیز بیانگر وجود رطوبت بیشتر در روز طوفان نسبت به روز قبل از طوفان و ناپایداری ناشی از صعود همرفتی شدید (حدود دو برابر) در روز رخداد طوفان تندری است.
کلید واژگان: ایران, توزیع زمانی و مکانی, طوفان تندری, تحلیل همدیدی, skew-tIn the present study, the synoptic and thermodynamic analysis of the thunder storm occurrence in Iran has been addressed. For this purpose, the data related to days with a thunderstorm of 20 synoptic stations in the eastern part of Iran and geopotential heights (hgt), omega and specific moisture content (shum) data were used during the statistical period (2010-2015). After extraction of days with thunderstorms, Arc GIS software and IDW method were used for temporal and spatial distribution maps. Then using GrADS software, synoptic maps were prepared and analyzed in different levels of atmosphere. Also, for the thermodynamic analysis, the Skew-t and CAPE and PWAT indices were used. The results of temporal and spatial distribution showed that from Jiroft city in the province of Kerman to the high latitudes in April and May, the highest frequency of thunder storms is observed and to the lower latitudes from December to February, there is a lot of thunder storms. In the northern part of the study area, the most frequent occurrence is in the spring and in the southern part of the region, the most occurrence occurs in the winter. In total, in all the study areas throughout the year, there is shortly thunderstorm event. The results of the synoptic analysis also showed that during the days with thunderstorms, the negative omega and the ascending and unstable air, and on the other hand, the influence of moisture on the atmosphere of the area and the placement under the cut of low and the front of the Trough, conditions for the occurrence of this Provides a phenomenon. Investigating the skew-t; CAPE and PWAT indices also indicate that there is more humidity in storm day than the day before the storm and the instability resulting from a severe convective rise on the day of thunderstorm.
Keywords: Iran, Temporal, spatial distribution, Thunder storm, Synoptic Analysis, skew-t -
هدف از این مطالعه بررسی و پهنه بندی ماهانه تابش موج بلند خروجی سطح زمین ایران می باشد. بدین منظور داده های تابش موج بلند خروجی زمین (OLR) طی دوره آماری 1398-1354 از پایگاه داده ncep/ncar استخراج و مورد تجزیه تحلیل قرار گرفت. محاسبات مدل بر اساس میانگین دوره و تفکیک مکانی (°5/2*°5/2) درجه انجام شد. جهت استخراج موج بلند زمین ایران از امکانات برنامه نویسی در محیط نرم افزار گردس و برای بررسی و پهنه بندی از نرم افزار GIS بهره گرفته شده است. یافته ها نشان داد با بررسی شاخص فضایی آماره Gi بیشنه لکه های داغ تابش موج بلند خروجی ماهانه ایران در سطح 99%، 95% درصد در ماه مرداد، تیر، خرداد، شهریور و مهرماه می باشد. لکه های داغ مطابق با مناطق کمربند گرمسیری و در عرضهای جغرافیایی پایین تر از 30 درجه شمالی است؛ و همچنین بیشینه لکه-های سرد در سطح 99%، 95% درصد در ماه بهمن، آذر، دی، اسفند، فروردین می باشد و بیشینه لکه های سرد تابش موج بلند خروجی زمین به صورت کمربندی از شمال شرق به سوی شمال غرب کشیده می شود و شامل نواحی شمال شرق، شمال و شمال غرب کشور و همچنین نواحی ارتفاعات شمالی کوه های زاگرس کشور را شامل می شود.
کلید واژگان: تغییرات زمانی و مکانی, OLR, خودهمبستگی فضاییThe purpose of this study is to analysis monthly OLR of the Iranian surface. For this purpose, the ground OLR data was extracted and analyzed from the ncep/ncar database during the statistical period of 1354-1398. In order to extract the have been used in the Gards software and GIS. Findings showed that by examining the spatial index of Gi statistic, the hot spots of Iran's OLR are 99% and 95% in August, July, June, September and October. Hot spots correspond to areas of the tropics and to latitudes below 30 degrees north; Also, the maximum cold spots are at the level of 99%, 95% in February, December, January, March, April, and the maximum cold spots OLR from the northeast to the northwest. It includes the northeastern, northern and northwestern regions of the country, as well as the northern highlands of the Zagros Mountains.
Keywords: Temporal, Spatial Variations, OLR, Spatial Index Of Statistics Gi -
تغییرات در تابش موج بلند خروجی زمین به عنوان یک شاخص حیاتی سینوپتیکی دگرگونی و مخاطرات آب و هوایی است که برای شناسایی کمربند خشک گرمسیری، چرخش سلول هادلی، نوسانات اقیانوسی-جو، ابرهای ضخیم و همرفتی، پیش بینی زلزله و گردوغبار در نظر گرفته می شود؛ هدف از این مطالعه بررسی تغییرات فصلی تابش موج بلند خروجی ایران می باشد. بدین منظور داده های تابش موج بلند خروجی زمین طی دوره آماری 1396-1354 از پایگاه داده ncep/ncar استخراج و مورد تجزیه تحلیل قرار گرفت. یافته ها نشان داد تابش موج بلند خروجی ایران به نسبت افزایش هر سال، به مقدار W/m2 16/0+ افزایش و همچنین، با افزایش عرض جغرافیایی به مقدار W/m2 37/0- کاهش می یابد. روند تغییرات فصلی بیانگر این است که 100درصد مساحت کشور در فصل زمستان از روند افزایشی معنی داری و در فصل پاییز عدم معنی داری برخوردار بوده است. فصل تابستان 24/21 درصد و در بهار 35/18 درصد از روند کاهشی عدم معنی داری برخوردار است که در جنوب شرق شامل استانهای سیستان و بلوچستان، کرمان، فارس و هرمزگان است و همچنین 76/78 درصد فصل تابستان و 65/81 درصد فصل بهار از روند افزایشی عدم معنی داری برخوردار می باشد. بررسی شاخص فضایی آماره Gi لکه های داغ تابش موج بلند خروجی ایران در فصل های بهار، پاییز و زمستان در جنوب و جنوب شرق کشور شامل استانهای سیستان و بلوچستان، هرمزگان، کرمان، جنوب فارس، بوشهر و در فصل تابستان در مرکز ایران شامل دشت های لوت، کویر و صحرای پست نمک زار و ماسه زار طبس و همچنین در غرب ایران در استانهای کرمانشاه، خوزستان و ایلام با مرکزیت موسیان مشاهده شده است.مناطق لکه های سرد در همه فصول به صورت کمربندی از شمال شرق به سوی شمال غرب و همچنین در زاگرس شمالی مشاهده شده است که کمینه آن با میانگین W/m2220- 213 به مرکزیت خوی، ماکو، چالدران، جلفا و مرند است.
کلید واژگان: تغییرات زمانی و مکانی- OLR- شاخص فضایی آماره GiIntroductionChanges in OLR can be considered as a critical indicator of climate change and hazard; studies have shown that since 1985, long-range radiation has increased the output of the Earth and is a cause of increased heat in the troposphere. This has led to an increase in drought and a slight decrease in the cloud in the upper terposphere, as well as an increase in Hadleychr('39')s rotation toward higher latitudes. On the other hand, clouds play an important role in the long-wave changes of the Earthchr('39')s output and are adequately evaluated at the global energy scale at all spatial and temporal scales.
Data and methods :
In the present study, in order to calculate the variability and the pattern of seasonal spatial dependence of the long-range radiation output of Iran, OLR data from 1974 to 1976 were daily updated from the NCEP / NCAR databases of the National Oceanic and Oceanographic Organization of the United States of America. To calculate Iranchr('39')s long-range output radiation, in the Iranian atmosphere (from 25 to 40 degrees north and 42.5 to 65 degrees east), using Grads and GIS software. First, the general characteristics of the earthchr('39')s long wave were investigated. To obtain an overview of the spatial status of the seasonal changes of the long-wave and its variability over the country, the average maps and coefficients of the long-wave variations of the earthchr('39')s output were plotted in the spring, summer, fall, and winter seasons. In this study, the slope of linear regression methods using mini tab software was used for trend analysis. Hotspot analysis uses Getis-Ord Gi statistics for all the data.
Explaining the results:
The results of this study showed that the mean of long wave in Iran is 262.3 W/m2. The highest mean long-range radiation output in spring, autumn, and winter is related to latitudes below 30 degrees north, especially in the south and south-east of Iran, with the highest mean in autumn and winter with wavelengths. High output 282-274 W/m2 as well as spring with mean W/m2 295-291 below latitude 27.5° C, which is in Sistan and Baluchestan provinces, south and southeast of Fars. Hormozgan has also been observed; the lowest OLR average in these seasons is observed above latitude 30 ° N in the northwestern provinces with the lowest mean in the season Yew and winter with mean long wavelength output 213-225 W/m2 and also observed in spring with mean 226-235 W/m2 at latitude 37.5 ° C and latitude 44 ° N in Maku and Chaldaran Is. In summer, the highest OLR averages of 316-307 W/m2 are observed in east of Iran with centralization of Zabol, Kavir plain and Tabas desert as well as west of Iran in Kermanshah, Khuzestan and Ilam provinces, with central length The latitude is 47.50 degrees north and latitude 32/32 east in Ilam province in the city of Musian, due to desertification, saltwater and sand, as well as the absence of high clouds, indicating an increase in the frequency of earthquakes and It is a drought that will lead to shortage of rainfall and increased rainfall in these areas; the lowest average long-range radiation output in summer with W/m2 235-226 extends as a narrow strip from southeast to Chabahar and extends to the middle Zagros highlands in Chaharmahal Bakhtiari province and northwest areas in Maku, Chaldaran, Khoi, Jolfa, Marand, Varzegan, Kalibar, Parsabad, Ahar and Grammy cities. It has also been observed in the northern coastal provinces of Iran including Mazandaran, Gilan, Astara, Talesh, Namin. According to the trend of long-wave radiation output of Iran increased by 0.16 W/m2 and decreased by 0.37 W / m2 with increasing latitude. Seasonal trends indicate that 100 percent of the country has a significant increase in winter and no significant fall in autumn. 21.24% in summer and 18.35% in spring have no significant decreasing trend, which in south-east includes Sistan and Baluchestan, Kerman, Fars and Hormozgan provinces and 78.76% in summer and 81.65% in summer. Spring has a significant non-significant upward trend. The spatial dependence of the hot spots on Iranchr('39')s long-wave radiation at 90, 95 and 99% confidence levels is 45.49% in spring, 37.57 in autumn, and 44.55% in winter. The high wave radiation of summer is 42.2%, which is observed in north of Sistan and Baluchestan province with central Zabul and in east of Lot and Tabas desert and in west of Ilam province with central of Musian. But in spring, autumn and winter in the south and southeast of the country including Sistan and Baluchestan, Hormozgan, Kerman, South Fars, Bushehr provinces and in central Iran including Lot Plains, Desert and Salt Lake and Tabas sandy desert. It is also observed in western Iran in Ilam province, so that these areas correspond to the tropical belt at latitude 30 degrees north. This is due to its location in the subtropical region, the low latitude of Iran, especially south and southeast to central Iran including Lut Plain, Desert and Tabas Desert due to its proximity to the equator, the angle of sunlight is higher and perpendicular. Spun. The spatial dependence of cold spots on long-wave radiation at 90, 95 and 99% confidence levels in spring is 33.44%, autumn is 41.41% and in winter is 44.55%. Cold spots of long-wave radiation are 25.5% in the summer, located at latitudes above 35 ° N in the subtropical belt and include northeast areas in North Khorasan Province in the cities of Bojnourd, Esfarain, Jajarm, Mane and Semlaghan, Safi Abad and northern coastal areas in Golestan, Mazandaran, Guilan, and northwestern provinces of Iran including Ardabil, East and West Azerbaijan, Qazvin and Zanjan North Tfaat Kvh Hay Zagros includes the provinces of Kurdistan, Hamedan, Markazi, Qom, Kermanshah North East part. Minimum OLR cold spot with average output longwave radiation of 213 W/m2 220 northwest of Khoy, Maku, Chaldaran, Jolfa and Marand can be an indicative role for determining convective activity and dynamic / frontal precipitation.
Keywords: Temporal, Spatial Variations-OLR-Spatial Index of Statistics Gi -
دیدبانی جهانی در سال های اخیر تغییرات قابل ملاحظه ای را در رفتار و ویژگی های پدیده های جوی فرین نشان می دهد. موقعیت خاص جغرافیایی، توپوگرافی و تنوع در رخداد سامانههای جوی در استان مازندران هر ساله سبب وقوع تعدادی از پدیدههای فرین می شود. در سالهای اخیر تعداد و شدت آن ها در استان افزایش یافته است. در این تحقیق از آمار روزانه دما و بارش در 15 ایستگاه همدیدی استان به منظور شناسایی توزیع زمانی و مکانی رخداد فراسنج های فرین استفاده شد. از ایستگاه های بابلسر و رامسر با دارابودن آمار بلندمدت (2017 - 1971)، جهت بررسی روند تغییرات نمایه های فرین دما و بارش استفاده شد. روند نمایه های دمایی نشان داد که طول مدت گرما، تعداد روزهای تابستانی و شب های حاره ای به طور خیلی چشمگیر افزایش و اختلاف دمای بیشینه و کمینه روزانه به طور چشمگیری کاهش یافته است و تغییر معنی داری در روند نمایه های بارش در هیچ یک از این دو ایستگاه مشاهده نشد. بررسی نمایه های فرین فراسنج دما روشن کرد که فراوانی روزهای یخبندان در نواحی مرتفع بیشتر است و روزهای یخی در نواحی ساحلی- جلگه ای به ندرت روی می دهد. نمایه های حداقل دمای روزانه، روزها و شب های سرد با افزایش ارتفاع در استان رابطه ی مستقیمی دارند. میانگین دماهای بیشینه و تعداد روزها و شب های گرم در نواحی ساحلی- جلگه ای شرق استان بیشترین مقدار را دارد و به سوی نواحی مرتفع و غربی استان کاهش می یابد. دامنه تغییرات شبانه روزی دما در نواحی کوهستانی بیشترین مقدار را داراست. بنابراین نمایه های دمای بیشینه در مناطق شرقی استان و نمایه های دمای کمینه در ارتفاعات استان سهم بیشتری دارند و توزیع دما در استان مازندران با توپوگرافی منطقه همخوانی مناسبی دارد.بررسی نمایه های بارندگی روشن کرد که از نواحی ساحلی- جلگه ای غرب استان به سمت ارتفاعات و شرق استان، از میزان و شدت بارش ها کاسته می شود.در بررسی نمایه های فصلی کمترین دمای کمینه در تمام فصول ایستگاه بلده می باشد.
کلید واژگان: تغییر اقلیم, نمایه های فرین, توزیع زمانی و مکانی, استان مازندرانIntroductionGlobal observation in recent years has shown remarkable changes in the behavior and characteristics of extreme atmospheric phenomena. Geographic location, topography and variety in the occurrence of atmospheric systems causes a number of these phenomena in the Mazandaran province every year. In recent years, the number and severity of extreme events in the province has increased. Therefore, it is necessary to identify temporal and spatial distributions of the mentioned hazards in order to adapt to these hazards and reduce the effects of extreme phenomena.
Materials and methodsDaily temperature and precipitation data were used in the 15 stations of the Mazandaran province in order to identify the temporal and spatial distribution of the extreme parameters. To ensure the quality of them, homogeneity, adequacy of data and recovering and estimation of lost data implemented. Data homogeneity was investigated by Run-Test method. In this method, each of the series values is compared with the mean of the data. The parameter z is computed (relation 1). If its magnitude is greater than 1.96, the data is considered at 95% heterogeneous confidence level here r, m and n are the total number of sequences, the number of values smaller than the mean and the number of values greater than the mean, respectively. In the study of sufficient number of years for stations, the Makus relationship (relation 2) was determined. (2) where y, t and R are the minimum number of required years, the Student’s t test value at the 90% confidence level and the ratio of y value based on 100 year return interval to y value based on a 2 year return interval. The minimum statistical years are 10 years old and a 15-year statistical period (2017-2003) selected in the present study. To study the trend of changes in extreme indices, Spearman nonparametric test was used in the Babolsar and Ramsar stations with long-term data (1971-2017). This method uses data’s rank instead of the actual values. Data are arranged in increments and ranks from 1 to n. If the Spearman correlation coefficient () (Equation 3) was greater than 1.96, the assumption of the trend in the data series was accepted, otherwise, the data series would be considered without trend. Here, for a sample of size n, i and are the historical rankings in order of occurrence and the ordered historical rankings are in incremental order. The temporal and spatial frequency of twenty extreme indices from the expert team ETCCDM[1] for temperature and precipitation were determined using Rclimdex software.
Results and discussionLong-term trend of extreme indices The number of cold nights and cold days as well as the number of frost days in recent years were dropped significantly. CSDI index was decreased only in Babolsar, while the WSDI was increased significantly at both stations. The number of summer days and tropical nights has increased. The max Tmax have been increasing in Ramsar. The min Tmin was increased at both stations. DTR index was dropped significantly. Rainfall indices at either of these two coastal stations do not show a meaningful change in recent years. Daily temperature extreme indices The maximum number of FD was in Baladeh and the maximum number of ID was in Siyahbisheh. The maximum number of SU was in Amol, Sari and Ramsar and the maximum number of TR20 was in Babolsar. The monthly max of Tmax was happened in Sari, Galougah in May, and the monthly min of Tmin was happened in Baladeh in the month January. Most of the cool days and nights and cold spell duration were in Alasht and most of the warm days and nights and warm spell duration were in Ramsar. Precipitation indices The highest and lowest total annual precipitations were observed in Ramsar (1915.4 mm) and Kojur (449 mm), respectively. The most RX1day and RX5day were in Ramsar. The highest number of days with heavy rainfall greater than 25 mm per year was in Ramsar (21 days) and the highest number of dry periods was happened at Amir Abad station (108 courses). Seasonal indices The max Tmax was in Sari, Galougah and Dasht-e-naz (42.6 ˚C) during spring, in Galougah (42.2 ˚C) during summer, in Galougah (42 ˚C) during autumn and in Gharakheil (34.6 ˚C) during winter. The min Tmin was in Baladeh every Season, it was 4.6 ˚C in spring, 12 ˚C in summer, 6.2 ˚C in autumn and -9.4 ˚C in winter.
ConclusionIn the study of trend, it was found that the warm duration index, number of summer days and tropical nights were increased significantly and the temperature difference between the daily maximum and minimum values was decreased significantly. No significant change was observed in rainfall indices at any of two stations in recent years. Investigating phenomena associated with extreme temperature indices showed that the frequency of frost days is higher in highlands, and ice days in the coastal-plain areas occur rarely. The minimum daily temperature, cold days and nights indices show a direct correlation with elevation in the province. The average of maximum temperatures and the number of warm days and nights in the east coastal zone of province are the highest and it goes down to the high and western regions of the province. Diurnal temperature range has the highest amount in the mountainous areas of the province. Therefore, the indices of maximum air temperature in the eastern parts of the province have higher values. the minimum temperature distribution is in a good agreement with topography of the region in Mazandaran province. The rainfall indices determine that the amount and severity of rainfall reduce from the west to the highlands and east of the province. So far, the largest number of days with a very heavy rainfall of more than 25 mm in the period 2003- 2017 belongs to Ramsar (351 millimeter).
Keywords: climate change, Extreme indices, temporal, spatial distribution, Mazandaran Province -
هدف از این مطالعه، واکاوی تغییرات مکانی و زمانی پوشش ابر بر فراز ایران است. برای دستیابی به این هدف، از پارامتر درصدابرپوش فرآورده ابر سطح 2، نسخه ی 6 مودیس تررا (MOD06) در دوره ی آماری 1379 تا 1392 شمسی استفاده شده است. با توجه به اینکه، فرآورده ابر سطح 2 مودیس فاقد شبکه ی مختصات جغرافیایی منظم روزانه است. ابتدا پایگاه داده ی جدیدی همسان با تفکیک مکانی پارامتر درصدابرپوش تهیه گردید تا واکاوی اقلیمی بر روی داده ها امکان پذیر گردد. یافته های این پژوهش نشان داد که در مقیاس سالانه تغییرات روند پوشش ابر در کشور با آهنگ 02/0+ درصد در سال (2 درصد در هر قرن) رو به افزایش است. در مقیاس فصلی، در فصل پاییز با روند کاهشی و در سایر فصول با روند افزایشی روبرو است و در مقیاس ماهانه در ماه های تیر، مهر، آذر و دی روند کاهشی و در سایر ماه ها روند افزایشی وجود دارد. پراکنش مکانی روند سالانه ی پوشش ابر در درازمدت نشان داد که پوشش ابر در شمال شرق، شمال غرب و بطور پراکنده در قسمت های داخلی کشور روند کاهشی دارد و در جنوب، جنوب شرقی و شرق کشور روند افزایشی دارد. پراکنش مکانی روند فصلی نشان داد که بیش تر مناطق کشور در فصل پاییز با روند منفی و در فصل زمستان با روند مثبت روبرو است.کلید واژگان: تغییرات زمانی و مکانی, پوشش ابر, درصد ابرپوش, مودیس تررا, ایرانThe aim of this research is an analysis of tempo-spatial variations of Cloud cover at Iran. To achieve the goal, Cloud Fraction parameter has been used from cloud product of MODIS sensor on Terra satellite at level 2 and version 6 (MOD06) in the period of 2000 to 2013. Given that, the Available parameters in level 2 MODIS cloud products have not geographical coordinates regular network, At first, the Cloud Fraction parameter data were transferred to a regular network, due to this process, Climate analysis on the data is possible, Base on new database the results showed that In annual scale, the trend variations in cloud cover increase at a rate of 0.02% per annual (2% per century) in the country. Cloud cover in the seasonal scale showed that the decreasing trend occurs in autumn and increasing trend in other seasons. Cloud cover in the monthly scale, in July, October, December, and January decreased and there is an increasing trend in other months. The spatial distribution of cloud cover in the long-term annual trend showed that there is decreasing trend in the North East, North West and sporadically in the central regions and an increasing trend in the South, Southeast, and East of the country. Spatial distribution of seasonal trend showed that most parts of the country have been with the positive trend in autumn and the negative trend in winter.Keywords: Temporal, spatial variations, Cloud cover, Cloud Fraction, Terra MODIS, Iran
-
در مطالعه حاضر به تحلیل زمانی- مکانی آلودگی های خطرناک کلانشهر تبریز با تاکید بر PM10 پرداخته شده است. بدین منظور، از داده های آلودگی PM10 سازمان حفاظت محیط زیست تبریز پنج ایستگاه باغشمال، راهآهن، راستهکوچه، آبرسان، و حکیم نظامی طی دوره آماری هشتساله (20052012) استفاده شد. در این مطالعه، روز خطرناک روزی تلقی میشود که مقدار PM10 آن بیشتر از 420 میکروگرم بر متر مکعب باشد. روش کار بدین شرح است: پس از تنظیم ماتریس داده ها، روزهای حدی با آلودگی خطرناک PM10 بیشتر از 420 میکروگرم بر متر مکعب در طی دوره آماری هشتساله (20052012) تفکیک و پس از فیلترگذاری از نظر زمانی- مکانی تجزیه و تحلیل شد. نتایج حاصل از تحلیل فراوانی PM10 نشان میدهد که در همه ایستگاه های مورد مطالعه بیشترین رخداد فراوانیPM10 در تابستان (ماه اوت) بوده است و بیشک سیطره پرفشار جنب حاره، به دلیل تشکیل لایه های حرارتی بر روی ایران، در افزایش آلودگی های خطرناک تابستانه تبریز نقش موثری دارد. در فصل زمستان در بیشتر ایستگاه ها رخداد آلودگی های خطرناک PM10 به کمترین مقدار خود رسیده است. در بین ایستگاه های مورد مطالعه، ایستگاه باغشمال و آبرسان دارای بیشترین آلودگی خطرناک PM10 هستندکلید واژگان: تبریز, تواتر, روزهای خطرناک, شاخص آلودگی PM10Analysis of temporal- spatial distribution of dangerous contaminants in Tabriz with emphasis on PM10IntroductionThe issue of urban climate has been greatly addressed in the recent years. The migration of human beings to cities, along with the density of the residential units, the noise of urban vehicles and dangers of air pollution and many other things have had bad effects for the human beings like asthma, bronchitis, cardiovascular diseases, and skin cancer. The issue of air pollution is one of the main factors in urban climatology. The knowledge of climatology emphasizes on the effects of atmospheric pollution on the climate and vice versa. The investigation about the effects of air pollution on climate features has greatly been conducted in the east Iran. In the warm seasons of the year, especially in summer, Subtropical High pressure (STHP) covers large areas of lower, middle and upper levels of atmosphere. This extends vertically on top of the high pressure at 200 hp to 700 hp and results in a clear sky with no clouds and rain. Subtropical High Pressure (STHP) all over the country varies from one day to other day. In some areas it is very close to the earth surface, in the south east parts of Iran in some days it is about 2000 or 3000 meters above the earth surface and allows warm, low moist air. This situation sometimes spreads to northern Iran and causes monsoon rain with increase in temperature and decrease in air ascent. This means that when the height and activity of the STHP is high, there is suitable condition for clear sky and direct solar radiation. On top of the inversion water vapor content of the air is so low that it cant be measured. Subtropical system in high altitude is one of the reasons for the formation of deserts in Iran. Subtropical high is getting stronger with increasing height from the ground, while the polar high becomes weaker with increasing altitude.MethodologyAs a matter of fact, mechanism for summer subtropical high pressure on Iran is a part of the Azores high pressure on the region. Thus, the above factors have caused the greatest events in the summer in Tabriz so that the city has experienced dangerous contaminants. With the beginning of autumn, the maximum and the minimum values of the dangerous contaminants was shifted compared with other seasons. However, in autumn there are dangerous infected cells in northern city of Tabriz in November and October, while in December the infected cells are in the center of Tabriz. The purpose of this study was to evaluate the frequency of Tabriz dangerous contaminants. For this purpose, the data of pm10 pollution index in the 8 years period (2005 to 2012) were evaluated by the Environmental Protection Agency in Tabriz (EPAT) for five stations of Baghshomal, RAhahan, Abrasn, Hakim Nezami, and Rastekhocheh. The index of this research is the day that the pm10 value of 420 is larger. The frequency and continuity of these dangerous days for each station were analyzed and investigated. In this study, we have used MATLAB for statistical analysis and SURFER for the mapping.Results And DiscussionThe results of the analysis have indicated that there were many dangerous air pollution events in summer in all stations with more dangerous contaminants in August as the highest frequency of the occurrence of dangerous infections.This indicates that formation of subtropical high pressure dominated on Tabriz play a key role in air pollution. However, in winter the occurrence of dangerous pollution has been reduced in most of the stations. Among the stations of this study, the stations of Baghshomal and Abrasan had the most dangerous pollution. The number of the days of infection in both stations has reached to more than 400 days during the study period. Furthermore, the results of the continuation of the dangerous contaminants of pm10 index indicate that more continuity of the pollution was in Baghshomal station and the lowest in Rahahan and Hakimnezami stations.ConclusionThe spatial distribution of pollutant cells is varied in different months in Tabriz. However, based on PM10 density the dangerous pollution in most of the months has been formed in the city center. In January, February, June, September, October (multi-core) and December there were the core and the density of pollution in the city center. In March and August, the maximum contamination of Tabriz has been observed in the East. Intensity of infestation was observed only in April, July and November in west Tabriz while the maximum condensation has been observed in the northern and the southern parts of the Tabriz. Tabriz had no nuclei condensation of dangerous pollution in July.Keywords: Tabriz, temporal, spatial, contaminants, frequency, dangerous days, PM10
-
آگاهی از دمای سطح زمین تغییرات زمانی - مکانی ترازمندی انرژی در سطح زمین را آشکار میسازد. در داده های دمای سطح زمین مودیس اختلاف زمان خورشیدی محلی وجود دارد. این اختلاف ممکن است به دلیل تفاوت زمانی در برداشت پیکسلهای یک خط پیمایش ماهواره در یک روز باشد یا در روزهای مختلف زمان محلی برداشت دما در یک پیکسل متغیر باشد. هدف از پژوهش کنونی بررسی شیب دمای سطح زمین و تغییرات زمانی - مکانی آن در ایران است که با داده های روزهنگام مودیس تررا و آکوا بررسی شده است. از نتایج این پژوهش میتوان در برآورد دمای سطح زمین برای یک ساعت محلی ثابت استفاده کرد. بدین ترتیب، امکان مقایسه داده های دورسنجی دمای سطح زمین با داده های ایستگاهی و نیز امکان مقایسه دمای پیکسلهای مختلف در سراسر ایران با یکدیگر فراهم میآید. تغییرات زمانی - مکانی چشمگیری در شیب دمای سطح زمین ایران دیده میشود؛ این تغییرات از شرایط محیطی و تغییرات دریافت انرژی خورشید اثر میپذیرد. در ماه های مختلف سال شیبهای دمایی صفر تا 1+ درجه کلوین بر ساعت و 1+ تا 2+ درجه کلوین بر ساعت گستره بیشتری از ایران را پوشش میدهند؛ با این حال، در دوره سرد سال شیبهای صفر تا 1- درجه، به ویژه در بلندی های البرز و زاگرس، گسترش مییابد.کلید واژگان: ایران, تغییرات زمانی, مکانی, شیب دمای سطح زمین, مودیسIntroductionThe MODIS facility for the Earth Observing System is a key element that supports ambitious goals related to studying the Earth as a system. One of the MODIS products is high quality land surface temperature data that product in Terra and Aqua platforms. Knowledge of the LST provides information on the temporal and spatial variations of the surface equilibrium state and is of fundamental importance in many applications. Therefore it is required for a wide variety of climatic, hydrological, ecological, and biogeochemical studies. Due to the intrinsic scanning characteristics of the MODIS instrument onboard the polar-orbiting satellites, the differences in local solar time for pixels along a given scan line on the same day or for the same pixel on different days in one revisit period may reach up to 2 hour. As LST changes with local solar time, it is therefore not possible to directly compare the LST of different pixels on the same day or of the same pixel on different days. Awareness about slope of land surface temperature is an important factor for cognition of land surface temperature behavior that can be used for increasing spatial and temporal resolution, comparability with other data, and accuracy achievement. The results will help to calculate a time consistent land surface temperature.Materials And MethodsLand surface temperature data used in this researchare product using Normalized split windows algorithm. This data downloaded from MODIS website (http://reverb.echo.nasa.gov/reverb) in daily time scale for temporal range of 2002/07/082015/11/30. Prior to this date Aqua MODIS data is not available. This dataset contain measurements of land surface temperature, quality assurance, view time, view angel, land surface emissivity and is available for day time and night time. MODIS Terra 10:30AM and Aqua 1:30PM data used in this study. A matrix in dimensions of 4984*1884077 is provided from this dataset for Terra and Aqua day time land surface temperature and day view time thatprovidedbasic information for this study. The slope of land surface temperature between tow observation of Terra (10:30AM) and Aqua (1:30PM) is calculated. View time and land surface temperature measurements should first recall and calculate variation of land surface temperature in relation to observationtime distance between Terra/Aquameasurement for each pixel of Iran for every day of time series.Slope of land surface temperature calculated inmonthly long term meanfor spatial and temporal analysis.Results And DiscussionView time is an important parameter in analysis of land surface temperature slope. View time distribution of land surface temperature in Iran show that Terra and Aqua view time has a high uniformity in frequency percent of observation times for land surface temperature at 10-12 and 12:30-14:30 for Terra and Aqua respectively. The coordination of land surface temperature slope and topography inIran is high. Low elevation lands between Zagros and central mountain ranges with northwest to southeast direction and central hollows such as Kavir plain, Lut desert and Jazmouryan is visible with higher slope in land surface temperature in alldifferent months of year. North and south shorelines and high elevations is the regions with smaller slope of land surface temperature. The slopes of less than 2 kelvin/hourin land surface temperature occurred in 85% of Iran territory. Difference between Terra and Aqua land surface temperature decreased clockwise from northeast aspects to southwest and increased from northwest to northeast.Slope of land surface temperature has an inverse relation with slope of land and decreased one kelvin/hour from zero to 22 degree slopes.ConclusionSignificant spatial and temporal variation that occurred in land surface temperature slope of Iran is the result of variation in environmental conditions and incoming solar radiation. Slope of land surface temperature in shorelines and mountainous regions is lower than deserts and low level elevations in all months of year. Slopes of zero to 1 and to kelvin/hour in land surface temperature covered great areas of Iran in different months. Zero to -1 kelvin/hour slope spread in winter season in high level elevations of Alborz and Zagros mountains. Decreasing of land surface temperature slope with increasing land slop can reflect relation between land surface temperature and elevation. The results show that small amounts of land surface temperature slop is the characteristic of major parts of Iran. In these conditions we can product a time consistent land surface temperature data for each pixels of every day in available time series for a time between MODIS Terra and Aqua observations.Keywords: Iran, Land surface temperature slop, MODIS, temporal, spatial variations
-
پدیده تگرگ یکی از بلایای جوی خطرناک است که اغلب همراه با طوفان های تندری بوده و از ناپایداری جو باروکلینیک در مقیاس همدیدی ناشی می شود. پژوهش حاضر در یک دوره آماری 23ساله (2015-1992) داده های مربوط به توفان های تگرگ (که کدهای 27، 87، 88، 89، 96، 94، 93 ،90، 99 را شامل می شود) از مرکز تحقیقات هواشناسی همدان دریافت گردید. در این پژوهش رخ دادهای تگرگ با استفاده از نرم افزار Spss خوشه بندی گردید، سپس از روزهای موجود، دو روز را که دارای ناپایداری شدیدتری بود، به عنوان روزهای نماینده انتخاب گردیدو سپس با استفاده از داده های سایت2 NCEP/NCAR نقشه های همدیدی فشار سطح دریا (Slp)، ژئوپتانسیل، شاخص امگا، نم ویژه در ترازهای دریا،850 و 700 هکتوپاسکال و نقشه وزش باد در تراز 850 با استفاده از نرم افزار گرادس3 در روز اوج بارش برای دو نمونه انتخابی،ترسیم و مورد تحلیل قرار گرفت. نتایج حاصل از پژوهش نشان داد که ایستگاه همدید ملایر بیش ترین فراوانی وقوع بارش تگرگ را به خود اختصاص و بیشینه وقوع این پدیده نیز در ماه های آوریل و مارس، در ساعت های 09 و 12 گرینویچ و بیشینه فراوانی آن در بعد از ظهر و اوایل شب رخ داده است. بررسی الگوهای جوی نشان داد که بارش تگرگ در منطقه مورد مطالعه، نتیجه گسترش سامانه ی کم فشار واقع بر روی دریای سرخ وسودان است که در روز بارش تگرگ منطقه در جلو ناوه(تراف) قرار داشته و سامانه پرفشار بر روی دریای عرب سبب انتقال هوای گرم و مرطوب با امتداد جنوبی- شمالی به درون منطقه شده و ضمن تقویت سامانه کم فشار سودانی شرایط مناسبی برای ایجاد ناپایداری و ریزش تگرگ فراهم کرده و بررسی نقشه های امگا نیز همگرایی تراز 1000 هکتوپاسکال و واگرایی قوی در ترازهای 850 و700 هکتوپاسکال را نشان داد، به طوری که جریانات بالاسوی قوی هوای گرم و مرطوب را صعود داده و زمینه ایجاد ناپایداری های شدید را فراهم کرده است.کلید واژگان: تگرگ, الگوی همدید, ویژگی های ترمودینامیکی, توزیع زمانی و مکانی, همدانIntroductionHail is one of the most destructive weather phenomena causing damage in many different sectors, including losses in the agricultural sector. Hail is linked to the atmospheric elements and geographical factors ; whenever atmospheric conditions are suitable for physical processes to be combined with geo-location, the intensification of this phenomenon happens. Depending on the size and severity of the storm, damage hail is different (Dong et al.,2006,p.193)Hail made more than a billion dollars damage in agriculture in China in 2004. Hail or ice grains are composed of particles with a diameter of 5 to 50 mm and sometimes more. Severe and frequent hail are resulted from vertical movement of air in the cumulonimbus clouds causing the sperm of water droplets around them to be absorbed and freezing (Alijani & kavyany, 2008,p.264). (Iran Pour et al.,2015,p.115)In relation to the synoptic and thermodynamic analysis of thunder storms in Hamadan, it has been concluded that the pressure center for cool and cold air to the middle layers of the atmosphere and the low pressure in the North West South underlying currents of warm and humid climate of the region is located in Saudi Arabia, where the growth of cumulus and cumulonimbus clouds create thunderstorms, hail, and torrential rain . Many studies have been conducted in the country in the field of hail. (Fryzbay,1961,p.350,)To study the relationship between type of damage caused by hail in the plains of synoptic patterns, United States of America showed that the speed of movement of synoptic systems has a significant impact on the degree of damage from hail on the ground. (Hough,1961,p.242)In a 50-year period, the distribution of thunderstorms, rain, maximum temperature, dew point and air fronts and their influence on the distribution of hail in Illinois have been examined.It is believed that distribution of hail in a small area can be affected by various elements of climate. (Ezzati,2003,p.121). The role physical processes in atmospheric instabilities resonance is studied.
The studied area
Hamadan province with approximately 19545/82 square kilometers, is located on (33 degrees 33 minutes) to (35 degrees and 38 minutes) north latitude, between (47 degrees and 45 minutes) meridians and (49 degrees and 36 minutes) east longitude.It is surrounded by Zanjan and Qazvin from north, Lorestan from south, Markazi from east and Kermanshah and Kordestan from west, and based on the last country division, it includes 9 states, 29 cities, 25 districts, 73 rural districts, and 1210 villages. The average height of sea level in this region is about 1800 meters. The highest point in Hamadan province is Alvand 3584 meters high and the lowest point is Omar Abad 1600 meters high. Specifications of the studied stations are given in the following table.
Table (1): Specifications of studied synoptic stations
Station name
Longitude
Latitude
Altitude
Hamadan Airport
48.32
34.52
1741.5
Nojeh in Kaboudar-Ahang
48.71
35.20
1679.7
Malayer
48/51
34/19
1725
Nahavand
48/24
23/22
1644Materials And MethodsTo investigate the occurrence of hail, data of statistical synoptic station were used four times during a period of 23 years (1992-2015). In this study, the primary data from surface meteorological research center, Hamedan in the period 1992 to 2015 (the first half of 2015) were collected and then initial test and extract data were controlled and a database of hail from present and past weather codes were prepared (codes 87.27, 88, 99,96,94,93,90, 89 to be included) at intervals of 3 hours . Of the 100 present weather codes, the codes of hail phenomena that contain different intensities were considered to include any emergence scout in hours and three hours before . In order to identify patterns that cause hail and identify the index days , a cluster analysis was carried out on 63 days of hail using software Spss in the study area and the days were clustered. Then, of the days,and the hours when occurrence, severity and duration of hail and rain showers were remarkable, two days was chosen, as the representative days (the tenth day of April 2002 and April 2007) and then other elements of climate, such as rainfall, temperature, pressure, humidity, wind direction and velocity and study phenomena such as thunderstorms (cumulonimbus clouds that arise), the date mentioned were studied using data from NCEP site / NCAR, maps synoptic pressure at sea level (Slp), geo potential indicator of omega-Nam, especially in the levels sea, 850 and 700 hp and map wind at 850 using the software GRADS on the peak month for the sample, and were analyzed. To analyze data and maps software packages such as, Grads Excel, ArcGIS, and Spss were used.DiscussionAccording to statistical analysis, the frequency of hail events in the synoptic stations was different from one another.Due to non-uniform distribution of hail during the period of 23 years (1992, 2015) studied at the station, due to its geographical location and topography , the greatest hail synoptic frequency stations has been 22 times in Malayer and the lowest synoptic frequency in Nojeh 10 times . Maximum occurrence of hail occurred in April and March at 09 and 12 o`clock (all hours in this study are in GMT) and evaluating changes in hours of hail indicates that the maximum number of storms may occur in the afternoon and early evening. In this period , Code 27 and Code 89 had the highest and lowest frequency , respectively.The greatest occurrence of hail , for a 23-year period, was from 9 to 15 o`clock reaching the peak at 12 o`clock and from 15 it declines rapidly. This shows the increase of atmospheric instabilities in these hours with increased atmospheric radiation energy received by the atmosphere and land surface features, atmospheric instability is perfectly amplified and appears to emerge at 9 to 12 because of the warming climate. The highest frequency of hail occurred respectively in April, March and February and the hail was not reported in July.
In June, December, August and September there was the lowest frequency and in March and April as the transitional warm (spring) months and, because of rapid warming of the Earth's surface and lower layers of the atmosphere (the day elongation and Sun approaching to vertical line ) and high air humidity , the instability increases and convective flows are accelerated and under the right conditions, convective clouds are grown making thunderstorm (Ezzati, 1382,p.121). The frequency of hail in the region in terms of year indicates that 1994 and 2009 experienced the greatest frequency and in 1995 and 1999 there was no hail. Spring had the highest frequency of hail and summer the lowest frequency . More than half of the hail events occurred were reported in the spring, followed by winter,.ConclusionThe province of Hamedan is among the areas where due to the occurrence of hail, in a lot of crops are destroyed , and there may also appear casualties. Therefore, understanding the mechanism of formation, development and prediction of hail and events resulting from it such as thunderstorms , heavy torrential rain, lightning and strong wind can provide great help in order to reduce losses. Based on the results obtained, the highest frequency of hail occurred in April and March. In the spring, sun warms the Earth's surface and sea level in the study area is also relatively and high latitude of region strengthens the conditions for south low pressure system at this time of year . Investigating the synaptic systems along with hail showed that location of low pressure center on Sudan and extension of its edge to higher latitude in eastnorth-westsouth has covered all the srea study.On hail day, an edge of high specific humidity of the water resources in the southern Red Sea, Arabian Sea and the Sudan, penetrates the high latitudes. On this day at the same time a strong negative core Omega 850 and 700 hp on the studied area is the convergence at 1000 hPa with strong divergence in the upper levels of the atmosphere is closed and warm, moist air advection divergent and the release of latent heat of abundant, high flows and create the appropriate convective instability has provided. The wind field maps of the day, hail, can be seen on the meridional wind in South and West orbital wind is weak.
Concurrently, a core of negavtive strong omega at level of 700 and 850 hectopascal was investigated on the study area where the convergence was seen in 1000 hectopascal in higher levels of strong convergence and the convicted warm and wet air becomes divergent .With the abundant latent heat released , suitable upward flows provide the ground of convection instabilities.Examination of wind field maps on hail days shows that the dominant wind is on the south equator region and the western wind is weak.
This confirms moisture advection over warm seas. With the establishment of a high pressure system in the South East of Saudi Arabia and on the Arabian Sea, warm, moist air transfer through divergent flux over Oman and Arabian Sea has been convicted to the center of the low pressure system located on the Red Sea and Sudan by the spinner on region. Penetration of warm low pressure edges from southern Iran on the West with vertical development of clouds (cumulus and cumulonimbus clouds), high humidity, convection and intense ascending and mountain conditions in the West have been an important factor for instability and hail.Keywords: hail, synoptic pattern, thermodynamic characteristics, temporal, spatial distribution, Hamedan -
در این پژوهش به منظور تحلیل مکانی- زمانی پرفشار جنب حاره ای، از داده های دوباره واکاوی شده ارتفاع-ژئوپتانسیل تراز میانی وردسپهر از پایگاه داده ی(NCEP/NCAR) با تفکیک افقی 5/2 درجه قوسی بهره گرفته شد. بازه ی زمانی مورد بررسی، 60 ساله(1327 تا 1386 شمسی) و بازه ی مکانی، نیمکره شمالی است و شامل 5184 یاخته می باشد که به صورت سامانه تصویر استریوگرافیک قطبی ترسیم شده است. برای مقایسه میانگین ها، از آزمون تی- تست با نمونه های جفت شده در دوره های 30 ساله و جهت تشخیص و آشکارسازی روند مثبت یا منفی(افزایشی یا کاهشی)، از آزمون روند کندال تاو استفاده شده است. نتایج نشان داد که درتمام ماه ها، مساحت سامانه پرفشار جنب حاره ای، روند افزایشی داشته است. بیشترین میزان روند مربوط به مردادماه و کمترین مقدار روند، از آن فروردین ماه می باشد. همچنین، حد شمالی این سامانه(پربند 5840 ژئوپتانسیل متر) در نیمه ی گرم سال، عموما در عرض های جغرافیایی بالا و بیشترین وسعت را در تیرماه دارد. اما با شروع دوره سرد سال، این پربند نیز به سمت عرض های جغرافیایی پایین کشیده شده و کمترین مساحت را در بهمن ماه، از آن خود می کند. به طور کلی، تغییر اقلیم ناشی از گرمایش جهانی، باعث گسترش بیشتر از حد نرمال سامانه پرفشار جنب حاره گردیده و به تبع آن، وسعت تاوه ی قطبی نیز کاهش بیشتری یافته است.
کلید واژگان: تحلیل مکانی, زمانی, پرفشار جنب حاره ای, تاوه ی قطبی, تغییر اقلیم, نیمکره شمالیIntroduction The climate is such that large system interaction between the four large-scale climatic: hydrosphere, cry sphere, lithosphere and Biosphere. If a change occurs in one of these systems, other systems quickly or slowly make their coordinators. The consequence of this arrangement, the skirt has been instrumental in changing the initiator includes an endless chain links, the device will tie together. Because this is the most important link between climates scientists in the fields of concern in recent years as climate change. Why the climate change caused by global warming and subsequently climate of the planet for future decades, the rapidly growing world system has been disturbed. 2- Methodology In this study, were used the data of mid-level atmospheric pressure, geopotential height pressure from the center's database based on National Centers for Environmental Prediction / National Center for Atmospheric Research(NCEP/NCAR). This data are available for 6 hours GMT time and period 1948 to 2007 on the website Climate Diagnostics Center. National Oceanographic & Atmospheric Administration Government (www.esrl.noaa.gov). The spatial resolution of the data is 2/5 degrees of arc and the area from 0 - 90 degrees north and 0 - 360 degrees meridian and contains 5184 pixels. For comparison, the t - test was used for paired samples and to achieve this goal, the 30-year period was divided into two periods. Diagnosis and detection of positive or negative trend (increase or decrease) during the period of the subtropical high pressure system in the area used the f Kendall's tau trend test and a significance level SPSS software 0/05 and 0/01. 3– Discussion Results of Kendall's tau trend test calculation showed, increases in all months of the area insubtropical high pressure system at significance level of 0/01. August has highest and April has lowest area rate. The system is based on semi-warm and generally higher latitude and has the lowest area. With the passing of spring, and the system is still moving higher latitude, until in July to reach its highest latitude. But with the start of the transition period and beginning of cold period of the year, this contour is pulled toward the low latitudes and most of the area is covered and In February to reach its lowest latitude. 4– Conclusion The results showed that all the months of the study period, with an increasing trend (positive) area are subtropical high pressure system. August has the highest and April has the lowest area rate. The northern limit of the system (contour of 5840 geopotential) in the semi-warm temperate latitudes generally is based as parts of the North, Central Mediterranean, central Europe and North America and is area lowest in July. But with the onset of cold periods, the contour is pulled down latitude and occupies the most area in February.Keywords: Temporal, Spatial Analysis, Subtropical high Pressure, Polar Vortex, Glimate Change, Northern Hemisphere -
مجله جغرافیا و توسعه، پیاپی 40 (پاییز 1394)، صص 91 -108امروزه با پیشرفته شدن جوامع شهری، وجود کاربری فضای سبز و توزیع متناسب آن به یکی از مهمترین دغدغه های مدیران شهری به ویژه در کلانشهرها تبدیل شده است. گستردگی شهر تهران به همراه متمرکزتر شدن فضای داخلی آن ضرورت توجه به وضعیت دسترسی پارک های محله ای را بیش از پیش آشکار ساخته است. هدف پژوهش حاضر بررسی میزان سازگاری پارک های محله ای منطقه ی 5 شهرداری تهران با کاربری های همجوار، تحلیل میزان تناسب آنها با استانداردهای موجود و همچنین مکان یابی اراضی متناسب با استقرار پارک های مذکور در منطقه ی مورد مطالعه می باشد.
این پژوهش از لحاظ هدف، کاربردی و از لحاظ روش، توصیفی- تحلیلی می باشد. جهت بررسی وضعیت تناسب پارک های محله ای منطقه 5 شهرداری تهران، از نرم افزار GIS و تکنیک های موجود در آن همچون overlay(همپوشانی)، SpatialAnalysis(تحلیل های مکانی)، Proximity (مجاورت) و Network (شبکه) بهره گیری شده است. نتایج تجزیه و تحلیل های به دست آمده از تکنیک های به کار گرفته شده و همچنین استناد به خروجی مدل AHP، بیانگر آن است که بیشتر پارک های محله ای موجود در منطقه، در اراضی خوب و خیلی خوب استقرار یافته و به ندرت پارک هایی وجود دارند که در اراضی متوسط و ضعیف مکان گزینی شده باشند، همچنین با توجه به نقشه مذکور، هیچ کدام از پارک های محله ای موجود در اراضی خیلی ضعیف قرار ندارند.
نکته ی مهم قابل اشاره در نقشه ی نهایی این است که اراضی خیلی خوب زیادی وجود دارد که استقرار کاربری های محله ای در آنها یا کم است و یا متوازن توزیع نشده اند، بنابراین جهت برنامه ریزی کاربری اراضی منطقه ی مورد مطاله می توان از این اراضی با قابلیت سازگاری و تناسب خیلی خوب، جهت احداث و مکان گزینی پارک های محله ای استفاده نمود.
کلید واژگان: تناسب فضایی, مکانی, فضای سبز, پارک محله ای, GISToday، with the advance of urban society، the existence of green spaces and suitable distribution of them has become one of the most important concerns of the urban managers especially in metropolis. Extension of Tehran with concentrating internal space of it، has revealed the necessity of citizen’s accesses to parks، the aim of this research is evaluating the adaptability of local parks of district No. 5 of Tehran Municipality with neighboring uses، analysis of their compatibility with the existing standards and also locating appropriate lands for the establishment of such parks in the under study area. This research، from the view point of objective is an applied research and its method is descriptive –analytical one. To study the compability status of local parks، district 5 of Tehran Municipality، GIS software and its techniques including overlay، SpatialAnalysis، Proximity and Network have been used. The findings of performed analysis of the used techniques and also referring to the outputs of AHP model reveal that most of the area''s parks are located in good and very good and suitable lands and the parks with moderate and weak location can hardly be found. Also، regarding the said map، none of the parks are placed in very weak areas. The important point in the final map is that there are a lot of very good lands in which the local usages is low or have an unbalanced distribution. Therefore، for planning the land use of the study area، it is possible to use these lands with high adaptability and appropriateness for the establishment and locating local parks.Keywords: Spatial, temporal, Appropriateness, Green space, Neighborhood parks, GIS -
عناصر اقلیمی تاثیر زیادی بر روی زندگی انسانها دارد. بارش سنگین به عنوان یکی از این عناصر تاثیر مستقیم یا غیر مستقیم روی جوامع انسانی دارد. در این تحقیق الگوی زمانی و مکانی بارش سنگین در استان گیلان مورد تحلیل قرار گرفت. برای دستیابی به این هدف از 107 ایستگاه سینوپتیک، کلیماتولوژی و بارانسنجی با دوره آماری 30 ساله استفاده شد. بعلت داده های مفقوده بسیار، بعضی از این ایستگاه ها حذف شد و تنها 13 ایستگاه که شامل 2 ایستگاه سینوپتیک، 5 ایستگاه کلیماتولوژی و 6 ایستگاه بارانسنجی مورد استفاده قرار گرفت. روزهایی که دارای بارش بیش از 30 میلی متر بودند به عنوان روزهای همراه با بارش سنگین انتخاب شد. در مرحله اول الگوهای سالانه و ماهانه و دهه ای این رخدادها مورد ارزیابی قرار گرفت. در مرحله دوم فراوانی طبقات مختلف(شدت) را محاسبه کرده، و بر اساس آن نقشه های پهنه بندی با استفاده سیستم اطلاعات جغرافیایی ارائه گردید.نتایج این مطالعه نشان میدهدبر اساس تحلیل سالانه بارش سنگین ایستگاه انزلی دارای بیشترین میانگین بارش سالانه ایستگاه منجیل کمترین میانگین بارش سالانه در رژیم ماهانه بارش سنگین ماه اکتبر بیشترین میزان بارش سنگین و ماه مه کمترین میزان بارش سنگین را دارند.در تحلیل دهه ای مشخص شد که تغییرات چندانی به لحاظ فراوانی بارش سنگین در ایستگاه های مورد مطالعه رخ نداده است و در تحلیل میانگین بارش سنگین پربارانترین ایستگاه های استان به لحاظ دریافت بارش سنگین ایستگاه های هستند که در مرکز استان و بسیار نزدیک به خط ساحلی می باشند.کلید واژگان: بارش سنگین, گیلان, الگوی زمانی, مکانی, GISClimatic elements have great effects on human lives . Heavy rain fall as on of these elements and direct or indirect effect on human communitiesIn this research , time and place models of heavy rainfall in the province of Gilan has been analyzed.In order to reach this goal a 30-yearold Statistics were used which were related to 107 climatic stations and 6 rain guage stations.Due to many lost data statistics , some of these stations were eliminated.Only 13 synoptic stations , 5 climatic stations and 6 rain recorder stations were used in this study . the days where rainfalls were over 30 millimeters were selected as days of heavy rainfalls. The research method ,In the first stage, yearly , monthly and decade patterns of these events were drafted in terms of GIS maps and their related graphs. In the second stage , the abundance of different levels of intensities of these data were cal culated .According to these facts the related maps were prepared , and drawn.This map demonstrates the stations that are situated in a particular level.Keywords: Heavy rainfall, Gilan, temporal, Spatial pattern, GIS
-
حوضه زاینده رود به دلیل تنوع آب و هوایی و آب حیات بخش رودخانه زاینده رود، یکی از مناطق مهم کشاورزی در سطح کشور است. از آنجایی که پدیده یخبندان به ویژه یخبندان دیررس بهاره به درختان میوه و محصولات کشاورزی این منطقه خسارت زیادی وارد می کند؛ بنابراین بررسی یخبندان در این حوضه ضروری است. در این تحقیق شدت یخبندان دوره سرد سال و فصل بهار در حوضه زاینده رود در 5 آستانه ی ضعیف (0 تا 5- درجه)، متوسط (1/5- تا 10- درجه)، شدید (1/10- تا 15- درجه)، بسیار شدید (1/15- تا 20- درجه) و فوق العاده شدید (کمتر از 20- درجه سلسیوس) با استفاده از آمار دمای کمینه شبانه روز 13 ایستگاه هواشناسی طی دوره آماری 16 ساله (72-1371 تا 87-1386) بررسی گردید. نقشه پهنه بندی فراوانی شدت های مختلف یخبندان نیز در محیط Arc Map ترسیم شد. نتایج تحقیق نشان می دهد که تمام ایستگاه های مورد مطالعه حوضه زاینده رود در دوره سرد سال یخبندان ضعیف تا بسیار شدید را تجربه می کنند؛ اما یخبندان فوق العاده شدید تنها در مناطق مرتفع (بالای 2000 متر) اتفاق می افتد. در فصل بهار، یخبندان ضعیف تا آخر فروردین و در ایستگاه های مرتفع تا دهه سوم اردیبهشت و یخبندان متوسط تنها در ایستگاه های 2000 متر به بالا در فروردین ماه رخ می دهد. یخبندان شدید نیز تنها در شمال غرب منطقه مورد مطالعه اتفاق می افتد. با توجه به نقشه های پهنه بندی، شمال غرب حوضه زاینده رود از نظر فراوانی وقوع شدت های مختلف یخبندان منطقه پرخطر می باشد.
کلید واژگان: تغییرات زمانی, مکانی یخبندان, حوضه زاینده رود, دمای کمینه, پهنه بندیGeographical Research, Volume:29 Issue: 3, 2014, PP 147 -164Zayanderoud Basin is one of the important agricultural areas in country level because of climatic variety and resuscitative water of Zayanderoud River. Since frost phenomenon especially late spring frost incurs great damages on fruit trees and agricultural products of this region، it is necfessary to study frost in this basin. In this research، the intensity of frost during cold period and spring season in Zayanderoud Basin in five thresholds: mild (0 to -5 0C)، moderate (-1. 5 to -10 0C)، strong (-1. 10 to -150C)، very strong (-1. 15 to -20 0C) and extraordinarily strong (lower than -200C) was studied using daily minimum temperature statistics of 13 meteorological stations during 16-years statistical period (1992-1993 to 2007-2008). Frequency zoning map of different frost intensities was also drawn in ARC MAP environment. The results of research show that all studied stations of Zayanderoud Basin experience mild to very strong frost during cold period، but the extraordinarily strong frost only is occurred within elevated regions (above 2000 m). In spring season، mild frost is occurred in until late Farvardin month and within elevated stations until third decade of Ordibehesht and moderate frost is only occurred within 2000 m stations and above in Farvardin month. Strong frost is only occurred in the studied north-western region. According to zoning maps، north-western Zayanderoud Basin is hazardous in terms of the frequency of occurrence of different frost intensities.Keywords: Temporal, Spatial Changes, Frost, Zayanderoud Basin, Minimum Temperature, Zoning -
مطالعه رابطه متقابل محیط کالبدی شهرها با رفتارهای اجتماعی از نوع منفی و ناهنجار آن، موضوعی است که طی چند دهه اخیر به مطالعات جغرافیایی افزوده شده و چارچوب علمی و عملی برای مطالعه و شناسایی ناهنجاری ها در فضای جغرافیایی فراهم آورده است. در تحقیق حاضر با انتخاب شهر ارومیه به عنوان مطالعه موردی، سعی شده تا قابلیت های سامانه اطلاعات جغرافیایی (GIS) در زمینه سرقت از منزل به آزمون گذاشته و خروجی های حاصله در قالب نقشه مناطق جرم خیز، ارایه شود. روش مورد استفاده برای انجام این تحقیق، آماری-گرافیکی است. بدین مفهوم که برای تحلیل الگوهای مکانی- زمانی جرم از مدل های آماری گرافیک مبنا در محیط GIS استفاده شده است. بررسی نتایج حاصل از به کارگیری GIS نشان می دهد که الگوی فصلی وقوع سرقت منازل در شهر، متمرکز بر فصول بهار و تابستان و الگوی هفتگی بر روزهای آخر هفته (پنج شنبه و جمعه) متمرکز است.
کلید واژگان: تحلیل مکانی, زمانی, توزیع جغرافیایی, سرقت منزل, GIS, ارومیهIn this research Uremia was chosen as a case study. Trying to capabilities of GIS, sprung on the robberies of house and The resulting output in the form of a map of the crime-ridden areas, should be introduced.the method used is Statistical-graphical. The results show that the seasonal pattern of home robberies is concentrated in the spring and summer. Weekly pattern is concentrated on the weekends (Thursday and Friday).Keywords: Analysis of spatial, temporal, Geographical distribution, house robberies, GIS, Urmia -
بررسی شرایط جوی همزمان با بارش های شدید دوره سرد سال در استان های خراسان رضوی و شمالی در مقیاس همدید و چگونگی توزیع زمانی - مکانی بارش ها در ارتباط با این شرایط هدف اصلی این پژوهش است. در این مطالعه پراسنج های فشار سطح دریا و دما سطحی به منظور بررسی شرایط سطح زمین در هنگام وقوع بارش های شدید استفاده شده است، نم ویژه و جهت باد در تراز 700 هکتوپاسکال به منظور رهگیری منبع رطوبتی این بارش ها مورد بررسی قرار گرفته، ضمن آنکه تراز 500 هکتوپاسکال به عنوان سطح مطلوب در بررسی الگوهای همدید مطالعه شده است. جهت و سرعت باد در تراز 300 هکتوپاسکال نیز برای بررسی نقش جت باد در ایجاد بارش های شدید، ارزیابی شده اند. داده های مذکور در بازه زمانی 11 ساله (1995- 2005) و به صورت روزانه اخذ شده اند. از پارامترهای مذکور برای بارش های مربوط به هر ماه، میانگین گیری به عمل آمد تا رفتار کلی جو در هنگام وقوع بارش های شدید در منطقه مطالعاتی و در هر ماه مشخص گردد. نتایج کسب شده نشان دهنده آنند که کانون بارش های شدید در دوره سرد سال در استان خراسان رضوی (جنوب منطقه) قرار دارد. الگوی همدیدی همزمان با بارش های شدید فرود بلند مدیترانه می باشد و دریای سرخ به عنوان منبع اصلی این بارش های تعیین گردید. نکته قابل توجه دیگر، استقرار رودباد جنب حاره ای در تراز 300 هکتوپاسکال در اکثر موارد بارش شدید در منطقه می باشد.
کلید واژگان: بارش شدید, الگوهای همدید, توزیع زمانی و مکانی بارش شدید, استان های خراسان رضوی و شمالیThe presented study aims to investigate synoptic atmospheric conditions along with heavy precipitation in Khorasan Razavi and Khorasan Shomali provinces. The identification of temporal and spatial distribution of heavy precipitation associated with these extreme conditions is another goal of this study. The amount of precipitation greater than 20 mm was chose to distinguish heavy rainfall from others. The parameters such as sea level pressure, temperature, relative humidity, specific humidity at the level of 700 hPa and wind direction were analyzed to identify sources of heavy precipitation moisture. Geopotential height at the level of 500 hPa was considered to determine heavy precipitation synoptic patterns. Wind speed and direction at the level of 300 HPA were evaluated to track the high-speed wind (jet stream). Then, these parameters were averaged monthly to investigate the general behavior of the atmosphere status associated with heavy precipitation in the studied area. The results show that in cold period of year the foci of heavy precipitation are located in Khorasan Razavi County. Mediterranean deep trough and Red Sea were identified as synoptic pattern and the main moisture source of heavy precipitation, respectively. Subtropical jet stream also recognized along with almost all heavy precipitation cases at level of 300 hPa.Keywords: Heavy precipitation, Synoptic patterns, Temporal, spatial distribution, The Khorasan Razavi, Khorasan shomali provinces
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.