به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه « distance matrix » در نشریات گروه « ریاضی »

تکرار جستجوی کلیدواژه «distance matrix» در نشریات گروه «علوم پایه»
  • Sakthidevi Kaliyaperumal, Kalyani Desikan *
    In this paper, we determine the distance Laplacian and distance signless Laplacian spectrum of generalized wheel graphs and a new class of graphs called dumbbell graphs.
    Keywords: distance matrix, generalized wheel graph, dumbbell graph, distance Laplacian eigenvalues, distance signless Laplacian eigenvalues}
  • Mina Rajabi-Parsa *, Mohammadjavad Eslampour

    Let G be a graph, the distance d(u,v) between two vertices u and v of G is the minimumlength of the paths connecting them. The aim of this paper is computing the distance matrix of infinite familiy of fullerene graph A10n.

    Keywords: Diameter, Distance Matrix, Fullerene}
  • مجید آرزومند*

    در این مقاله، ماتریس فاصله و چند جمله ای مشخصه ی یک گراف کیلی روی گروه متناهی G بر حسب نمایش های تحویل ناپذیر گروه G بیان می شوند. فرمول های دقیقی برای مقادیر ویژه ی ماتریس فاصله ی گراف های کیلی مکعبی روی گروه های آبلی و برخی گراف های شناخته شده ی دیگر ارایه می دهیم. خانواده ی نامتناهی از گراف های کیلی که تمام مقادیر ویژه ی ماتریس فاصله ی آن ها اعداد صحیحی هستند، معرفی می کنیم. ثابت می کنیم روی گروه آبلی متناهی G یک گراف کیلی مکعبی همبند وجود دارد که تمام مقادیر ویژه ی ماتریس فاصله ی آن صحیح هستند اگر و تنها اگر G یکریخت با یکی از گروه های Z_4 ، Z_6 ، Z_4xZ_2 ، Z_6xZ_2  یا Z_2xZ_2xZ_2  باشد. علاوه بر این نشان می دهیم که، تحت یکریختی، تنها 5 گراف کیلی مکعبی همبند وجود دارد که تمام مقادیر ویژه ی ماتریس فاصله ی آن ها صحیح هستند.

    کلید واژگان: ماتریس فاصله, گراف کیلی, مقدار ویژه, نمایش تحویل ناپذیر}
    Majid Arezoomand*
    Introduction

    In this paper, graphs are undirected and loop-free and groups are finite. By 𝐶𝑛, 𝐾𝑛 and 𝐾𝑚,𝑛 we mean the cycle graph with 𝑛 vertices, the complete graph with 𝑛 vertices and the complete bipartite graph with parts size 𝑚 and 𝑛, respectively. Also by 𝑍𝑛 and 𝑆𝑛, we mean the cyclic group of order 𝑛 and the symmetric group on 𝑛 symbols, respectively. Let Γ be a simple connected graph with vertex set {𝑣1 , … , 𝑣𝑛}. The distance between vertices 𝑣𝑖 and 𝑣𝑗 , denoted by 𝑑(𝑣𝑖 , 𝑣𝑗), is the length of a shortest path between them. The distance matrix of Γ, denoted by 𝐷Γ, is an 𝑛 × 𝑛 matrix whose (𝑖,𝑗)-entry is 𝑑(𝑣𝑖 , 𝑣𝑗). The distance characteristic polynomial of Γ, denoted by 𝜒𝐷(Γ) is det(𝜆𝐼 − 𝐷) and its zeros are the distance eigenvalues (in short 𝐷-eigenvalues) of Γ. If 𝜆 is a 𝐷-eigenvalue of Γ with multiplicity 𝑚, then we denote it by 𝜆 [𝑚] . Let 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 are the 𝐷-eigenvalues of Γ. Then 𝜆1 is called distance spectral radius of Γ and we denote it by 𝜌(Γ). Also the multiset {𝜆1 , … , 𝜆𝑛} is denoted by S𝑝𝑒𝑐𝐷(Γ). The studying of eigenvalues of distance matrices of graphs goes back to 1971, a paper by Graham and Pollack and thereafter attracted much more attention [2]. There are several applications of distance matrix such as the design of communication networks, network follow algorithms, graph embedding theory and in chemistry, for more details see [2]. Let 𝐺 be a group and 𝑆 = 𝑆 −1 be a subset of 𝐺 not containing the identity element of 𝐺. The Cayley graph of 𝐺 with respect of 𝑆, denoted by C𝑎𝑦(𝐺, 𝑆), is a graph with vertex set 𝐺 and edge set {{𝑔, 𝑠𝑔}|𝑔 ∈ 𝐺, 𝑠 ∈ 𝑆}. C𝑎𝑦(𝐺, 𝑆) is a simple |𝑆|-regular graph. Let 𝑥, 𝑦 ∈ 𝐺. Then for all 𝑔 ∈ 𝐺, 𝑥 and 𝑦 are adjacent if and only if 𝑥𝑔 and 𝑦𝑔 are adjacent. This implies that 𝑑(𝑔, ℎ) = 𝑑(1, ℎ𝑔 −1 ) and 𝑑(𝑔) = 𝑑(1) for all 𝑔, ℎ ∈ 𝐺, where 𝑑(𝑥) = ∑𝑦∈𝐺 𝑑(𝑥, 𝑦). In the literature, the adjacency eigenvalues of Cayley graphs have been more widely used than the distance eigenvalues. A graph Γ is called distance (adjacency) integral if all the eigenvalues of its distance (adjacency) matrix are integers. A graph is called circulant if it is a Cayley graph over a cyclic group. Circulant graphs of valency 2 are cycles. In 2001, the distance eigenvalues of cycles computed [6]. In 2010, the distance spectra of adjacency integral circulant graphs characterized and proved that these graphs are distance integral [9]. In 2011, Rentlen discussed the distance eigenvalues of Cayley graphs of Coxeter groups using the irreducible representations of underlying group [10]. He proved that the eigenvalues of the distance matrix of a Cayley graph of a real reflection group with respect to the set of all reflections are integral and provided a combinatorial formula for some such spectra. Then, FosterGreenwood and Kriloff proved that the eigenvalues of the distance, adjacency, and codimension matrices of Cayley graphs of complex reflection groups with connection sets consisting of all reflections are integral and provided a combinatorial formula for the codimension spectra for a family of monomial complex reflection groups [5]. In this paper, we determine the characteristic polynomial of the distance matrix of arbitrary Cayley graphs in terms of the irreducible representations of underlying groups. Let Γ = C𝑎𝑦(𝐺, 𝑆) be a Cayley graph over a finite group 𝐺. It is well-known that one can determine the (adjacency) eigenvalues Γ by the irreducible representations of 𝐺, see for example [3, Corollary 7]. In this paper, by a similar argument, we determine the distance eigenvalues of Γ in terms of the irreducible representations of 𝐺. Then, as an application of our result, we exactly determine the distance eigenvalues of some well-know Cayley graphs: cycles, 𝑛-prims, hexagonal torus network and cubic Cayley graphs over abelian groups.

    Results and discussion

    We construct an infinite family of distance integral Cayley graphs. Also we prove that a finite abelian group 𝐺 admits a connected cubic distance integral Cayley graph if and only if 𝐺 is isomorphic to one of the groups 𝑍4 , 𝑍6 , 𝑍4 × 𝑍2 , 𝑍6 × 𝑍2 , or 𝑍2 × 𝑍2 × 𝑍2 . Furthermore, up to isomorphism, there are exactly 5 connected cubic distance integral Cayley graphs over Abelian groups which are 𝐾4 , 𝐾3,3 , 𝒫3 , 𝒫4 and 𝒫6 , where 𝒫𝑛 is the 𝑛-prism.

    Conclusion

    The following conclusions were drawn from this research.  The characteristic polynomial of the distance matrix of Cayley graphs over a group G is determined by the irreducible representations of G.  Exact formulas for 𝑛-prisms, hexagonal torus network and cubic Cayley graphs over Abelian groups are given.  Infinite family of distance integral Cayley graphs are constructed.  Cubic distance integral Cayley graphs over finite abelian groups are classified. By a similar argument, one can find all quartic distance integral Cayley graphs over finite Abelian groups.  One can easily compute the distance eigenvalues of a Cayley graph using irreducible representations of the underlying group.

    Keywords: Distance matrix, rreducible representation, Cayley graph, Eigenvalue}
  • Seyed M. Mirafzal *, R. Kogani

    The distance eigenvalues of a connected graph $G$ are the eigenvalues of its distance matrix‎‎$D(G)$‎. ‎A graph is called distance integral if all of its‎‎distance eigenvalues are integers.‎‎Let $n$ and $k$ be integers with $n>2k‎, ‎kgeq1$‎. ‎The bipartite Kneser graph $H(n,k)$ is the graph with the set of all $k$ and $n-k$ subsets of the set $[n]={1,2,...,n}$ as vertices‎, ‎in which two vertices are adjacent if and only if one of them is a subset of the other‎. ‎In this paper‎, ‎we determine the distance spectrum of $H(n,1)$‎. ‎Although the obtained result is not new cite{12}‎, ‎but our proof is new‎. ‎The main tool that we use in our work is the orbit partition method in algebraic graph theory for finding the eigenvalues of graphs‎. ‎We introduce a new method for‎‎determining the distance spectrum of $H(n,1)$ and show how‎‎a quotient matrix can contain all distance eigenvalues of‎‎a graph.‎

    Keywords: Distance matrix, distance spectrum, orbit partition, bipartite Kneser graph}
  • M. Torktaz, A. R. Ashrafi *

    The commuting graph of a finite group GG, C(G)C(G), is a simple graph with vertex set GG in which two vertices xx and yy are adjacent if and only if xy=yxxy=yx. The aim of this paper is to compute the distance Laplacian spectrum and the distance Laplacian energy of the commuting graph of CACA-groups.

    Keywords: Distance matrix, commuting graph, distance Laplacian spectrum}
  • عبدالله آل هوز *، مریم باغی پور، ابراهیم هاشمی
    فرض کنیم یک گراف ساده و همبند باشد. در این صورت برای راس دلخواه از گراف ، عدد انتقال راس که با نماد نمایش داده می شود، مجموع فاصله های راس از بقیه رئوس گراف تعریف می شود. ماتریس لاپلاسین بدون علامت فاصله ی گراف به صورت تعریف می شود، جایی که ماتریس فاصله گراف و ماتریس قطری متشکل از اعداد انتقال رئوس گراف می باشد. در این مقاله، برای مینیمم مجموعه احاطه گری گراف ، ماتریس لاپلاسین بدون علامت فاصله ی مینیمم احاطه گری از گراف ، که آن را با نماد نمایش خواهیم داد، را تعریف کرده و برخی خواص مهم آن را بررسی می نماییم. همچنین انرژی ماتریس را به صورت مجموع مقادیر ویژه آن تعریف کرده و تعدادی کران بالا و پایین برای انرژی و همچنین برای شعاع طیفی (بزرگترین مقدار ویژه ماتریس) ارائه می دهیم.
    کلید واژگان: گراف, ماتریس فاصله, ماتریس لاپلاسین بدون علامت فاصله, انرژی ماتریس لاپلاسین بدون علامت فاصله, انرژی ماتریس لاپلاسین بدون علامت فاصله ی مینیمم احاطه گری}
    Abdollah Alhevaz *, Maryam Baghipur, Ebrahim Hashemi
    Let G be a simple connected graph. The transmission of any vertex v of a graph G is defined as the sum of distances of a vertex v from all other vertices in a graph G. Then the distance signless Laplacian matrix of G is defined as D^{Q}(G)=D(G)(G), where D(G) denotes the distance matrix of graphs and Tr(G) is the diagonal matrix of vertex transmissions of G. For a given minimum dominating set of a graph G, our aim in this paper is to define and study the so called minimum dominating distance signless Laplacian matrix, denoted by MDD^{Q}(G). We study some properties of the matrix MDD^{Q}(G). We also define the minimum dominating distance signless Laplacian energy of a graph G, denoted by EDD^{Q}(G), as the sum of the absolute values of the eigenvalues of MDD^{Q}(G), and give some upper and lower bounds for the energy and spectral radius of MDD^{Q}(G).
    Keywords: Graph, Distance matrix, distance signless Laplacian matrix, Distance signless Laplacian energy, Minimum dominating distance signless Laplacian energy}
  • R. B. Bapat, Sivaramakrishnan Sivasubramanian
    Let $A = (a_{i,j})_{1 leq i,j leq n}$ be an $n times n$ matrix where $n geq 2$. Let $dt(A)$, its second immanant be the immanant corresponding to the partition $lambda_2 = 2,1^{n-2}$. Let $G$ be a connected graph with blocks $B_1, B_2, ldots B_p$ and with $q$-exponential distance matrix $ED_G$. We given an explicit formula for $dt(ED_G)$ which shows that $dt(ED_G)$ is independent of the manner in which the blocks are connected. Our result is similar in form to the result of Graham, Hoffman and Hosoya and in spirit to that of Bapat, Lal and Pati who show that $det ED_T$ where $T$ is a tree is independent of the structure of $T$ and only its number of vertices. Our result extends more generally to a product distance matrix associated to a connected graph $G$. Similar results are shown for the $q$-analogue of $T$''s laplacian and a suitably defined matrix for arbitrary connected graphs.
    Keywords: Immanant, distance matrix, laplacian}
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال