به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه « finite group » در نشریات گروه « ریاضی »

تکرار جستجوی کلیدواژه «finite group» در نشریات گروه «علوم پایه»
  • Sara Pouyandeh *
    For a finite group $G$, define $ \psi^{\prime \prime}(G)=\psi(G)/|G|^2 $, where $\psi(G)=\sum_{g\in G}o(g)$ and $o(g)$ denotes the order of $g \in G $.  In this paper, we give a criterion for $p$-solvability by the function  $\psi''$, where $ p \in \{7,  11\} $. We prove that if $ G $ is a  finite group and $\psi''(G)>\psi''({\rm PSL}(2, p))$, where $p \in \{7, 11\}$, then $G$ is a $p$-solvable group.
    Keywords: Finite Group, Sum Of Element Orders, P-Solvable, Function}
  • سید مجید جعفریان امیری*، آرزو بهشتی پور

    فرض کنیم $ G $ یک گروه متناهی نابدیهی باشد. گراف اشتراک $\Gamma(G)$، گرافی است که راس هایش تمام زیرگروه های سره نابدیهی $G$ هستند و در آن دو راس متمایز $H$ و $K$ به هم وصل می شوند اگر $H\cap K\neq 1$. در این مقاله، عدد خوشه گراف اشتراک گروه های دوری ای تعیین می شود که در تجزیه مرتبه آنها به اعداد اول، حداکثر سه عامل اول موجود باشد.

    کلید واژگان: گروه متناهی, گروه دوری, گراف اشتراک, عدد خوشه}
    Seyyed Majid Jafarian Amiri *, Arezoo Beheshtipour

    Let $G$ be a finite non-trivial group. The intersection graph $\Gamma(G)$, is a graph whose vertices are all proper non-trivial subgroups of $G$, and there is an edge between two distinct vertices $H $ and $K$ if and only if $H\cap K\neq 1$. In this paper, we determine the clique number of the intersection graph of the cyclic groups of orders having at most three primes in their decomposition.

    Introduction

    Let $G$ be a finite group. There are several ways to associate a graph to $G$ (see [7] and the references therein). The one we will consider in this paper, is denoted by $\Gamma(G)$ and is called the intersection graph of $G$. The intersection graph $\Gamma(G)$ of a nontrivial group $G$ is an undirected graph without loops and multiple edges defined as follows: the vertex set is the set of all proper non-trivial subgroups of $G$, and there is an edge between two distinct vertices $H $ and $K$ if and only if $H\cap K\neq 1$ where 1 denotes the trivial subgroup of $G$. The graph $\Gamma(G)$ has been extensively studied ( see, for example, [1, 8, 11, 12]). Currently, the present authors in [4], have determined all groups $G$ such that the clique number of $\Gamma(G)$ is less than 5, and also they have given a criterion for solvability of finite groups $G$, by the clique number of $\Gamma(G)$. More precisely, it has been proved that if $G$ is a finite group such that the clique number of $\Gamma(G)$ is less than 13, then $G$ is solvable. Note that 13 is the clique number of $\Gamma(A_5)$, where $A_5$ is the alternating group on 5 letters. Other researches in this topic are intersection graphs of a semigroup, a module, and ideals of a ring, were investigated in [5], [2] and [6, 10], respectively.

    Main Results

    We start this section with the following definition:Definition 2.1. The subset $X$ of vertices of a finite graph $\Gamma$ is called a {\it clique}, if the induced subgraph by $X$ is a complete graph. The maximum size of a clique, among all cliques of $\Gamma$, is called the clique number of $\Gamma$ and we denote it by $\omega(\Gamma)$. If $\Gamma$ is empty (without vertex), then we define $\omega(\Gamma)=0$ and $\omega(\Gamma)=1$ if $\Gamma$ is null (with a non-empty vertex set with no edges). A clique $X$ in $\Gamma$ is called {\it maximal} if there is no clique $Y$ in $\Gamma$ such that $X\subsetneq Y$. Note that the maximum size, among all maximal cliques in $\Gamma(G)$, is $\omega(\Gamma(G))$. To prove the main theorems, we need the following result that its proof can be found in the most valid book of group theory. Proposition 2.2. If $G=\langle g\rangle$ is a cyclic group of ordsr $n$, then for any divisor $s$ of $n$, there is a unique subgroup $H=\langle g^{\frac{n}{s}}\rangle$ of $G$ of order $s$. The following result is a consequence of the above proposition. Corollary 2.3. Let $G$ be a finite cyclic group. Then, the intersection of two proper subgroups of $G$ is non-trivial if and only if their orders are not relatively prime. For a natural number $n$, we denote by $C_n$ the cyclic group of order $n$, $\pi(n)$ the set of prime divisors of $n$ and $d(n)$ the number of all divisors of $n$. Note that if $p$ is a prime number and $n$ is a multiple of $p$, then the number of divisors of $n$ with multiple $p$ is $d(\frac{n}{p})$. If $V(\Gamma(G))$ is the set of vertices of $\Gamma(G)$, then by Proposition 2.2, we have $|V(\Gamma(C_n))|=d(n)-2$. In this paper, we obtain $\omega(\Gamma(C_n))$, where $|\pi(n)|=3$.

    Summary of Proofs/Conclusions

    Now, we state and prove our main results. First, we find the clique number of a cyclic group of a prime power order. Proposition 3.1. If $p$ is a prime and $m$ is a positive integer, then $\omega(\Gamma(C_{p^m}))=m-1$.Proof. Since $|V(\Gamma(C_n))|=d(n)-2$ and $d(p^m)=m+1$, we get the conclusion. In the sequel, assume that $p_1, p_2$ and $p_3$ are distinct primes. Also assume that $n_1, n_2$ and $n_3$ are positive integers such that $n_1\geq n_2\geq n_3$. In the following results, we obtain the clique number of the intersection graph of group $C_{p_1^{n_1}p_2^{n_2}}$. We recall that $d(p_1^{n_1}p_2^{n_2})=(n_1+1)(n_2+1)$. Proposition 3.2. We have$\omega(\Gamma(C_{p_1^{n_1}p_2^{n_2}}))=d(p_1^{n_1}p_2^{n_2})-2-d(p_2^{n_2})=n_1n_2+n_1-1$. Proof. Suppose that $G=C_{p_1^{n_1}p_2^{n_2}}$. Then, we define the subsets of $V(\Gamma(G))$ as follows:♦ For $1\leq i\leq 2$, $V_{p_i}(\Gamma(G))$ is the set of all   proper subgroups $H$ of $G$ such that $\pi(|H|)=\{p_i\}$.
    ♦ $V_{p_1p_2}(\Gamma(G))$ is the set of all proper subgroups $H$ of $G$ such that $\pi(|H|)=\{p_1, p_2\}$. It is clear that $\{V_{p_1}(\Gamma(G)), V_{p_2}(\Gamma(G)), V_{p_1p_2}(\Gamma(G)) \}$ forms a partition for $V(\Gamma(G))$. By Proposition 2.2, we have $|V_{p_i} (\Gamma(G))|=d(p_i^{n_i})-1=n_i$ and $|V_{p_1p_2}(\Gamma(G))|=d(\frac{n}{p_1p_2})-1=n_1n_2-1$. By Corollary 2.3, in $\Gamma(G)$, each element of the clique $V_{p_1}(\Gamma(G))$ does not join to any element of the clique $V_{p_2}(G)$ and moreover all elements of $V_{p_i}(\Gamma(G))$ for $i=1, 2$ join to all elements of the clique $V_{p_1p_2}(G)$. Therefore $V_{p_1}(\Gamma(G))\cup V_{p_1p_2}(\Gamma(G))$ and $V_{p_2}(\Gamma(G))\cup V_{p_1p_2}(\Gamma(G))$ are the only maximal cliques of $\Gamma(G)$ and since $n_1\geq n_2$, we have the result.Now we state the last main result. Theorem 3.3. Let $G= C_n$ where $n=p_1^{n_1}p_2^{n_2}p_3^{n_3}$. Then\\(1) If $n_1\geq n_2n_3$, then $\omega(\Gamma(G))=d(\frac{n}{p_1})-1=n_1+n_1n_2+n_1n_3+n_1n_2n_3-1$.\\(2) If $n_1\leq n_2n_3$, then $\omega(\Gamma(G))=d(\frac{p_1^{n_1}p_2^{n_2}}{p_1p_2})+d(\frac{p_1^{n_1}p_3^{n_3}}{p_1p_3})+d(\frac{p_2^{n_2}p_3^{n_3}}{p_2p_3})+d(\frac{n}{p_1p_2p_3})-1$\\$$\hspace{5cm}=n_1n_2+n_1n_3+n_2n_3+n_1n_2n_3-1.~~~~~~~~~~~~~~~~~~~~~~~\hspace{4cm}$$Proof. Similar to the proof of Proposition 3.2, we define the subsets of $V(\Gamma(G))$ as follows:\\♦ For $1\leq i\leq 3$, $V_{p_i}(\Gamma(G))$ is the set of all subgroups $H$ of $G$ such that $\pi(|H|)=\{p_i\}$. Therefore, $|V_{p_i}(\Gamma(G))|=d(p_i^{n_i})-1=n_i$.♦ $V_{p_ip_j}(\Gamma(G))$ is the set of all subgroups $H$ of $G$ such that $\pi(|H|)=\{p_i, p_j\}$ for $1\leq i<j\leq 3$. Therefore, $|V_{p_ip_j}(\Gamma(G))|=d(\frac{p_i^{n_i}p_j^{n_j}}{p_ip_j})=n_in_j$where $i\neq j$.♦ $V_{p_1p_2p_3}(\Gamma(G))$ is the set of all proper subgroups $H$ of $G$ such that $\pi(|H|)=\{p_1, p_2, p_3\}$. So, we have$|V_{p_1p_2p_3}(\Gamma(G))|=d(\frac{n}{p_1p_2p_3})-1=n_1n_2n_3-1$.By Proposition 2.2, the above sets forms a partition for $V(\Gamma(G))$. By Corollary 2.3, in $\Gamma(G)$, each element of the clique $V_{p_i}(\Gamma(G))$ does not join to any element of the clique $V_{p_j}(G)\cup V_{p_jp_k}(G)$ for all distinct $i, j, k$ and moreover all elements of $V_{p_i}(\Gamma(G))$ for $i=1, 2, 3$, join to all elements of the clique $V_{p_1p_2p_3}(G)\cup V_{p_ip_j}(G)$, where $1\leq i\neq j\leq 3$. Since $|G|$ has three prime divisors, the intersection of every two subgroups of $G$ of orders with two distinct prime divisors, is non-trivial (by Corollary 2.3). It follows that $V_{p_1p_2}(\Gamma(G))\cup V_{p_1p_3}(\Gamma(G))\cup V_{p_2p_3}(\Gamma(G))$ is a cloque in $\Gamma(G)$. Now, we define $W_i$ as follows for $1\leq i\leq 4$: $$W_1=V_{p_1}(\Gamma(G))\cup V_{p_1p_2}(\Gamma(G))\cup V_{p_1p_3}(\Gamma(G))\cup V_{p_1p_2p_3}(\Gamma(G)), \hspace{0.5cm}|W_1|=n_1+n_1n_2+n_1n_3+n_1n_2n_3-1$$ $$W_2=V_{p_2}(\Gamma(G))\cup V_{p_1p_2}(\Gamma(G))\cup V_{p_2p_3}(\Gamma(G))\cup V_{p_1p_2p_3}(\Gamma(G)), \hspace{0.5cm}|W_2|=n_2+n_1n_2+n_2n_3+n_1n_2n_3-1$$ $$W_3=V_{p_3}(\Gamma(G))\cup V_{p_1p_3}(\Gamma(G))\cup V_{p_2p_3}(\Gamma(G))\cup V_{p_1p_2p_3}(\Gamma(G)), \hspace{0.5cm}|W_3|=n_3+n_1n_3+n_2n_3+n_1n_2n_3-1$$ $$W_4= V_{p_1p_2}(\Gamma(G))\cup V_{p_1p_3}(\Gamma(G))\cup V_{p_2p_3}(\Gamma(G))\cup V_{p_1p_2p_3}(\Gamma(G)), \hspace{0.5cm}|W_4|=n_1n_2+n_1n_3+n_2n_3+n_1n_2n_3-1.$$ It is easy to see that $W_1, W_2, W_3$ and $W_4$ are the only maximal cliques in $\Gamma(G)$. Therefore, $$\omega(\Gamma(G))=max\{|W_1|, |W_2|, |W_3|, |W_4|\}.$$Since $n_1\geq n_2\geq n_3$, we have $|W_1|\geq |W_2|\geq |W_3|$. Thus$$\omega(\Gamma(G))=max\{|W_1|, |W_4|\}=max\{n_1+n_1n_2+n_1n_3+n_1n_2n_3-1, n_1n_2+n_1n_3+n_2n_3+n_1n_2n_3-1\},$$this completes the proof.

    Keywords: Finite group, cyclic group, Intersection graph, Clique number}
  • Sh. Chokani, F. Movahedi *, S. M. Taheri
    ‎Let $\Gamma$ be a finite group and $S$ be a non-empty subset of $\Gamma$‎. ‎A Cayley graph of the group $\Gamma$‎, ‎denoted by $Cay(\Gamma‎, ‎S)$ is defined as a simple graph that its vertices are the elements of $\Gamma$ and two vertices $u$ and $v$ are adjacent if $uv^{-1} \in \Gamma$. ‎The minimum edge dominating energy of Cayley graph $Cay(\Gamma‎, ‎S)$ is equal to the sum of the absolute values of eigenvalues of the minimum edge dominating matrix of graph $Cay(\Gamma‎, ‎S)$‎. ‎In this paper‎, ‎we estimate the minimum edge dominating energy of the Cayley graphs for the finite group $S_n$‎.
    Keywords: Minimum edge dominating energy, eigenvalue, Cayley graph, Finite group}
  • Zahra Mozafar, Bijan Taeri *

    ‎Suppose that $G$ is a finite group. ‎The acentralizer $C_G(\alpha)$ of an automorphism $\alpha$ of $G$‎,‎is defined as the subgroup of fixed points of $\alpha$‎, ‎that is $C_G(\alpha)= \{g \in G \mid \alpha(g)=g\}$‎.‎In this paper we determine the acentralizers of groups of order $p^3$‎, ‎where $p$ is a prime number.

    Keywords: Automorphism, Centralizer, Acentralizer, Finite group}
  • Hamideh Rashidi *, Mohammad Etezadi
    We denote the integer $ \prod_{g \in G} o(g) $ by $\psi^{\prime}(G)$ where $o(g)$ denotes the order of $g \in G$ and $G$ is a finite group. In [14], it was proved that some finite simple group can be uniquely determined by its product of element orders. In this paper, we characterize ${\rm Alt}(5) \times \mathbb{Z}_p$, where $p \in \{ 17, 23\}$, by their product of element orders.
    Keywords: Finite group, Hall subgroup, Product of element orders, Solvable group}
  • Maghsoud Jahani, Yadollah Marefat *, Hassan Refaghat, Bahram Vakili Fasaghandisi
    Let $G$ be a finite group and $\psi(G)=\sum_{g\in G}o(g)$, where $o(g)$ denotes the order of $g\in G$. We give a criterion for nilpotency of finite groups $G$ based on the sum of element orders of $G$. We prove that if $\psi(G)>\frac{13}{21}\psi(C_n)$ then $G$ is a nilpotent group.
    Keywords: Finite group‎, ‎element orders sum‎, ‎nilpotent group‎, ‎simple group}
  • Zohreh Habibi, Masoomeh Hezarjaribi

    Denote by $ G $ a finite group, by  $ {\rm hsn}(G) $ the harmonic mean Sylow number (eliminating the Sylow numbers that are one) in $G$ and by    $ {\rm gsn}(G) $ the geometric mean Sylow number (eliminating the Sylow numbers that are one) in $G$. In this paper, we prove that if either $ {\rm hsn}(G)<45/7 $ or  $ {\rm gsn}(G)< \sqrt[3]{300} $, then $G$ is solvable. Also, we show that if either $ {\rm hsn}(G)<24/7 $ or  $ {\rm gsn}(G)<\sqrt{12} $, then $G$ is supersolvable.

    Keywords: Finite group, Sylow subgroup, solvable groups}
  • Seyedeh Fatemeh Arfaeezarandi *, Vahid Shahverdi
    Let G be a Frobenius group. Using Character theory, it is proved that the Frobenius kernel of G is a normal subgroup of G, which is well-known as the Frobenius Theorem. There is no known character-free proof for this Theorem. In our note, we prove it by assuming that Frobenius groups are non-simple. Also, we prove that whether K is a subgroup of G or not, Sylow 2-subgroups of G is either cyclic or generalized quaternion group. In addition, by assuming some extra arithmetical hypotheses on G, we prove the Frobenius Theorem. We should mention that our proof is character-free.
    Keywords: Finite group, Frobenius group, Frobenius Theorem}
  • سعید میروکیلی*، حسین نراقی، محمدعلی دهقانی زاده

    یکی از مهمترین مباحث در نظریه گروه های فازی رده بندی زیرگروه های فازی از یک گروه متناهی است. این کار در نظریه گروه های فازی با استفاده از رابطه هم ارزی تعریف شده توسط مورالی و ماکامبا انجام شده است. با استفاده از این ایده، نراج و شارما شمارش زیرگروه های فازی شهودی یک گروه متناهی آبلی را با کمک پرچم های پایه دار دوگانه مورد مطالعه قرار دادند. ما در این مقاله با روش دیگری این کار را برای برخی گروه های آبلی و غیرآبلی متناهی انجام می دهیم. در واقع با کمک یک رابطه هم ارزی مناسب روی زیرگروه های فازی شهودی و مشبکه زیرگروه ها، شمارش زیرگروه های فازی شهودی گروه های متناهی مرتبه 12 را بیان می کنیم. همچنین شمارش زیرگروه های فازی شهودی گروه های متناهی $ Z_{p^k}\times Z_q$ و $Z_{p^k}$ با روش متفاوتی از مقاله[9] بدست می آوریم. در انتها، به کمک نتایج بدست آمده در این مقاله تعداد زیرگروه های فازی شهودی روی یک گروه با مرتبه کمتر از 16 در یک جدول را ارایه می دهیم.

    کلید واژگان: شمارش, زیرگروه, فازی شهودی, گروه متناهی}
    Saeed Mirvakili *, Hossein Naraghi, Mohammad Ali Dehghanizadeh

    One of the most important topics in the theory of fuzzy groups is the classification of fuzzy subgroups of a finite group. Enumeration of fuzzy subgroups has been done in the theory of fuzzy groups using the equivalence relation defined by Murali and Makamba. Using this idea, Neeraj and Sharma enumerated Intuitionistic fuzzy subgroups of a finite Abelian group by concept of double pinned flags.We are in thisWe do this in another way for some finite Abelian and non-Abelian groups. In fact, with the help of a suitable equivalence relation on Intuitionistic fuzzy subgroups and the lattice of subgroups, we obtain the enumeration of Intuitionistic fuzzy subgroups of finite groups of order 12. Also, we obtain the enumeration of Intuitionistic fuzzy subgroups of finite groups $Z_{p^k}\times Z_q$ and $Z_{p^k}$ with a different method from the article [9]. Finally, with the help of the results obtained in this paper, we present the number of Intuitionistic fuzzy subgroups on a group with order less than 16 in a table.

    Keywords: Enumeration, subgroup, Intuitionistic fuzzy, finite group}
  • Y. Marefat *, M. Gholami, H. Doostie, H. Refaghat

    TThe invariant $\psi (G)$, the {\it sum of element orders} of a finite group $G$ will be generalized and defined for the finite non-group semigroups in this paper. We give an appropriate definition for the order of elements of a semigroup. As well as in the groups we denote the sum of element orders of a non-group semigroup $S$, which may possess the zero element and$/$ or the identity element, by $\psi (S)$. The non-group monogenic semigroup will be denoted by $C_{n,r}$ where $2\leq r\leq n$. In characterizing the semigroups $C_{n,r}$ we give a suitable upper bound and a lower bound for $\psi (C_{n,r})$, and then investigate the sum of element orders of the semi-direct product and the wreath product of two semigroups of this type. A natural question concerning this invariant may be posed as "For a finite non-group semigroup $S$ and the group $G$ with the same presentation as the semigroup, is $\psi (S)$ equal to $\psi (G)$ approximately?" We answer this question in part by giving classes of non-group semigroups, involving an odd prime $p$ and satisfying $\lim_{p\rightarrow \infty} \frac{\psi (S)}{\psi (G)}=1$. As a result of this study, we attain the sum of element orders of a wide class of cyclic groups, as well.

    Keywords: Sum of element orders, Finite group, Non-group semigroups}
  • Rajat Nath *, Parthajit Bhowal
    For a non-abelian group $G$, its commuting conjugacy class graph $mathcal{CCC}(G)$ is a simple undirected graph whose vertex set is the set of conjugacy classes of the non-central elements of $G$ and two distinct vertices $x^G$ and $y^G$ are adjacent if there exists some elements $x' in x^G$ and $y' in y^G$ such that $x'y' = y'x'$. In this paper we compute the genus of $mathcal{CCC}(G)$ for six well-known classes of non-abelian two-generated groups (viz. $D_{2n}, SD_{8n}, Q_{4m}, V_{8n}, U_{(n, m)}$ and $G(p, m, n)$) and determine whether $mathcal{CCC}(G)$ for these groups are planar, toroidal, double-toroidal or triple-toroidal.
    Keywords: Commuting conjugacy class graph, Genus, Finite group}
  • Alexander Trofimuk *

    A subgroup A of a group G is called {\it seminormal} in G‎, ‎if there exists a subgroup B such that G=AB and AX~is a subgroup of G for every‎ ‎subgroup X of B‎. ‎The group G=G1G2⋯Gn with pairwise permutable subgroups G1‎,‎…‎,‎Gn such that Gi and Gj are seminormal in~GiGj for any i‎,‎j∈{1,…‎,‎n}‎, ‎i≠j‎, ‎is studied‎. ‎In particular‎, ‎we prove that if Gi∈F for all i‎, ‎then GF≤(G′)N‎, ‎where F is a saturated formation and U⊆F‎. ‎Here N and U‎~ ‎are the formations of all nilpotent and supersoluble groups respectively‎, ‎the F-residual GF of G is the intersection of all those normal‎ ‎subgroups N of G for which G/N∈F‎.

    Keywords: ‎Finite group‎, ‎residual‎, ‎seminormal subgroups‎, ‎product of subgroups‎, ‎derived subgroup}
  • Parthajit Bhowal, Rajat Kanti Nath*

    The commuting conjugacy class graph of a non-abelian group G, denoted by CCC(G), is a simple undirected graph whose vertex set is the set of conjugacy classes of the non-central elements of G and two distinct vertices xG and yG are adjacent if there exists some elements x′∈xG and y′∈yG such that x′y′=y′x′. In this paper we compute various spectra and energies of commuting conjugacy class graph of the groups D2n,Q4m,U(n,m),V8n and SD8n. Our computation shows that CCC(G) is super integral for these groups. We compare various energies and as a consequence it is observed that CCC(G) satisfy E-LE Conjecture of Gutman et al. We also provide negative answer to a question posed by Dutta et al. comparing Laplacian and Signless Laplacian energy. Finally, we conclude this paper by characterizing the above mentioned groups G such that CCC(G) is hyperenergetic, L-hyperenergetic or Q-hyperenergetic.

    Keywords: commuting conjugacy class graph, spectrum, energy, finite group}
  • Zahara Bahrami, Bijan Taeri *

    ‎Let G be a finite group which is not cyclic of prime power order‎. ‎The join graph Δ(G) of G is a graph whose vertex set is the set of all proper subgroups of G‎, ‎which are not contained in the Frattini subgroup G and two distinct vertices H and K are adjacent if and only if G=⟨H‎,‎K⟩‎. ‎Among other results‎, ‎we show that if G is a finite cyclic group and H is a finite group such that Δ(G)≅Δ(H)‎, ‎then H is cyclic‎. ‎Also we prove that Δ(G)≅Δ(A5) if and only if G≅A5‎.

    Keywords: ‎Finite group‎, ‎join graph‎, ‎cyclic group‎, ‎alternating group}
  • Maghsoud Jahani, Yadollah Marefat *, Hasan Refaghat, Bahram Vakili Fasaghandisi

    ‎Let $ G $ be a finite group and ( psi(G)=sum_{gin G}o(g) )‎, ‎where $ o(g) $ denotes the order of $gin G$‎. ‎We show that the Conjecture 4.6.5 posed in [Group Theory and Computation‎, ‎(2018) 59-90]‎, ‎is incorrect‎. ‎In fact‎, ‎we find a pair of finite groups $G$ and $S$ of the same order such that $ psi(G)<psi(S)$‎, ‎with $G$ solvable and $S$ simple‎.

    * The formulas are not displayed correctly.

    Keywords: ‎Finite group‎, ‎element orders sum‎, ‎solvable group‎, ‎simple group}
  • Hoshang Behravesh, Mehdi Ghaffarzadeh, Mohsen Ghasemi *, Somayeh Hekmatara

    ‎In this paper we prove that some Janko groups are uniquely‎ ‎determined by their orders and one irreducible character‎ ‎degree‎. ‎Also we prove that some finite simple $K_4$-groups are‎ ‎uniquely determined by their character degree graphs and their‎ ‎orders‎.

    * The formulas are not displayed correctly.

    Keywords: Finite group, ‎ ‎irreducible character, character graph}
  • Victor Monakhov, Irina Sokhor *
    ‎Let $G$ be a finite group in which every Sylow subgroup‎ ‎is seminormal or abnormal‎. ‎We prove that $G$ has a Sylow tower‎. ‎We establish that if a group has a maximal subgroup ‎‎‎‎with Sylow subgroups under the same conditions‎, ‎then this group is soluble‎.
    Keywords: Finite group, Sylow subgroup, abnormal subgroup, seminormal subgroup}
  • جواد باقریان*

    شرط سه تایی کامینا تعمیمی از شرط کامینا در نظریه گروه های متناهی است. سرشت های تحویلناپذیر سه تایی های  کامینا در حالت های خاص  بررسی شده است.
    در این مقاله ما در حالت کلی یک سه تایی کامینا (G,M,N)  را در نظر گرفته و سرشت های تحویل ناپذیر G  را بر حسب سرشت های تحویل ناپذیر  M و G/N  ارایه می دهیم.

    کلید واژگان: گروه متناهی, سرشت, سه تایی کامینا}
    Javad Bagherian*

    The Camina triple condition is a generalization of the Camina condition in the theory of finite groups. The irreducible characters of Camina triples have been verified in the some special cases. In this paper, we consider a Camina triple (G,M,N)  and determine the irreducible characters of G in terms of the irreducible characters of M and G/N../files/site1/files/61/0Abstract(1).pdf

    Keywords: Finite group, Character, Camina triple}
  • Robert Griess *
    We give a brief survey of recent work on integral forms in vertex operator algebras (VOAs).
    Keywords: integral forms, vertex algebra, vertex operator algebra, Finite group, invariant}
  • Stewart Stonehewer *

    ‎Generalizing the concept of quasinormality‎, ‎a subgroup H of a group G is said to be 4-quasinormal in G if‎, ‎for all cyclic subgroups K of G‎, ‎langle H,Krangle=HKHK‎. ‎An intermediate concept would be 3-quasinormality‎, ‎but in finite p-groups‎ - ‎our main concern‎ - ‎this is equivalent to quasinormality‎. ‎Quasinormal subgroups have many interesting properties and it has been shown that some of them can be extended to 4-quasinormal subgroups‎, ‎particularly in finite‎ ‎p-groups‎. ‎However‎, ‎even in the smallest case‎, ‎when H is a 4-quasinormal subgroup of order p in a finite p-group G‎, ‎precisely how H is embedded in G‎ ‎is not immediately obvious‎. ‎Here we consider one of these questions regarding the commutator subgroup [H,G]‎.

    Keywords: ‎Finite group‎, ‎Sylow subgroup‎, ‎abnormal subgroup‎, ‎seminormal subgroup}
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال