جستجوی مقالات مرتبط با کلیدواژه "monte-carlo simulation" در نشریات گروه "ریاضی"
تکرار جستجوی کلیدواژه «monte-carlo simulation» در نشریات گروه «علوم پایه»-
Journal of Computational Algorithms and Numerical Dimensions, Volume:3 Issue: 2, Spring 2024, PP 158 -173The optimal selection of Functionally Graded Material (FGM) materials profiles, with regard to cost functions such as weight and stress, is an important issue in the optimization field. In this study, the optimal multiobjective design of FG-beam, subjected to dynamic load as moving mass, has been investigated. Because of the importance of shear stress in FGMs, Timoshenko beam theory has been used in dynamic Analysis. By substituting terms of energy into the Lagrange equation, differential equations of motion are obtained. Displacement fields as a function of time and x-coordinate are calculated by means of the numerical solution of the above-mentioned equations. The mass and velocity of the moving object and the beam's width were considered certain parameters. Weight and maximum deflection were assumed as cost functions in multiobjective optimization. In addition to the means, the variance of the mentioned cost functions was considered to obtain robust behaviour in an uncertain space of parameters. By using a genetic algorithm, a fraction of constituents and an index of volume fraction (design variables) were selected so that objective functions were optimized. Pareto fronts' optimum points are presented, and trade-off points are proposed. Cumulative Distribution Function (CDF) curves demonstrated robust behaviour of the expressed design points.Keywords: FG-Beam, Moving Mass, Robust Design, Uncertainty, Pareto Front, Monte Carlo Simulation
-
Recently, Alizadeh and Shafaei (2023) introduced some estimators for varentropy of a continuous random variable. The present article applies these estimators and construct some tests of fit for Inverse Gaussian distribution. Percentage points and type I error of the new tests are obtained and then power values of the proposed tests against various alternatives are computed. The results of a simulation study show that the tests have a good performance in terms of power. Finally, a real data set is used to illustrate the application of the proposed tests.Keywords: Maximum Likelihood Estimates, Goodness-Of-Fit Test, Percentage Points, Monte Carlo Simulation, Test Power
-
This study compares the performance of the classic Black-Scholes model and the generalized Liu and Young model in pricing European options and calculating derivatives sensitivities in high volatile illiquid markets. The generalized Liu and Young model is a more accurate option pricing model that incorporates both the efficacy of the number of invested stocks and the abnormal increase of volatility during a financial crisis for hedging pur- poses and the financial risk management. To evaluate the performance of these models, we use numerical methods such as finite difference schemes and Monte-Carlo simulation with antithetic variate variance reduction tech- nique. Our results show that the generalized Liu and Young model outper- forms the classic Black-Scholes model in terms of accuracy, especially in high volatile illiquid markets. Additionally, we find that the finite differ- ence schemes are more efficient and faster than the Monte-Carlo simulation in this model. Based on these findings, we recommend using the general- ized Liu and Young model with finite difference schemes for the European options and Greeks valuing in high volatile illiquid markets.Keywords: Black-Scholes Equation, Finite Difference Scheme, Greeks, Monte-Carlo Simulation, Nonlinear Partial Differential Equation
-
This paper proposes a new approach to pricing European options using deep learning techniques under the Heston and Bates models of random fluctuations. The deep learning network is trained with eight input hyper-parameters and three hidden layers, and evaluated using mean squared error, correlation coefficient, coefficient of determination, and computation time. The generation of data was accomplished through the use of Monte Carlo simulation, employing variance reduction techniques. The results demonstrate that deep learning is an accurate and efficient tool for option pricing, particularly under challenging pricing models like Heston and Bates, which lack a closed-form solution. These findings highlight the potential of deep learning as a valuable tool for option pricing in financial markets.Keywords: Option pricing, Heston Model, Bates model, Deep Learning, Monte Carlo simulation, Variance reduction technique
-
In this paper, we aim to propose a new hybrid version of the Longstaff and Schwartz algorithm under the exponential Levy Jump-diffusion model using Random Forest regression. For this purpose, we will build the evolution of the option price according to the number of paths. Further, we will show how this approach numerically depicts the convergence of the option price towards an equilibrium price when the number of simulated trajectories tends to a large number. In the second stage, we will compare this hybrid model with the classical model of the Longstaff and Schwartz algorithm (as a benchmark widely used by practitioners in pricing American options) in terms of computation time, numerical stability and accuracy. At the end of this paper, we will test both approaches on the Microsoft share “MSFT” as an example of a real market.Keywords: Monte Carlo simulation, Levy jump-diffusion model, Longstaff, Schwartz algorithm, American option, Random Forest RI regression, Microsoft ``MSFT put option, Dynamic programming
-
در این مقاله به مسیله براوردیابی پارامترهای نامعلوم وقتی داده های طول عمر دارای توزیع پواسن-نمایی تحت طرح سانسور هیبرید فزاینده نوع دو هستند، در حالت کلاسیک و بیز می پردازیم. براوردگرهای نقطه ای و فاصله ای را تحت تقریب های کلاسیک و بیزی محاسبه می کنیم. برای محاسبه ی براوردهای نقطه ای، برآوردگرهای ماکزیمم درستنمایی را با استفاده از دو الگوریتم امیدریاضی گرفتن-ماکزیمم کردن و امیدریاضی گرفتن-ماکزیمم کردن تصادفی تحت تقریب کلاسیک بدست می آوریم. این الگوریتم ها به راحتی اجرا می شوند. همچنین برآوردهای بیزی را با بکار بردن روش تقریب لیندلی و تکنیک نمونه گیری ازنقاط مهم تحت پیشین های آگاهی بخش و ناآگاهی بخش با استفاده از تابع زیان های مربع خطا، آنتروپی و لاینکس محاسبه می کنیم. برآوردگرهای بازه ای کلاسیک و بیزی مرتبط، با در نظر گرفتن ماتریس اطلاع فیشر و روش چن-شایو محاسبه می شود. مجموعه ی داده های واقعی را آنالیز می کنیم و مطالعات شبیه سازی مونت کارلو برای مقایسه ی روش های پیشنهادی مختلف، انجام می شود. سرانجام نتیجه گیری و پیشنهادات را ارایه می کنیم .
کلید واژگان: براورد بیز, الگوریتم EM, الگوریتم SEM, تقریب لیندلی, شبیه سازی مونت کارلوIn this paper, the problem of estimating unknown parameters is investigated when lifetime data following Poisson-exponential distribution under classical and Bayesian frameworks based on progressively type-II hybrid censored data. We compute point and associated interval estimates under classical and Bayesian approaches. For point estimates in the problem of estimation, we compute maximum likelihood estimators of model using Expectation-Maximization (EM) and Stochastic Expectation-Maximization (SEM) algorithms under classical approach, these algorithms are easily implemented. We compute Bayes estimates with the help of Lindley and importance sampling technique under informative and non-informative priors using different loss functions namely squared error, LINEX as well as general entropy in Bayesian framework. The associated interval estimates are obtained using the Fisher information matrix and Chen and Shao method respectively under classical and Bayesian approaches. We analysis real data set, and conduct Monte Carlo simulation study for the comparison of various proposed methods. Finally, we present a conclusion.
Keywords: Bayesian Estimation, EM algorithm, SEM algorithm, Lindely approximation, Monte Carlo simulation -
اگر در مدل تنش-مقاومت، متغیرهای تصادفی X و Y به ترتیب بیان کننده مقاومت و تنش باشند، پارامتر قابلیت اعتماد آن یعنی (R=P(X>Y، به روش های ماکسیمم درستنمایی و بیز و همچنین فواصل اطمینان مختلف آن برای بسیاری از توزیع ها برآورد شد. اما در این مقاله وقتی که متغیرهای تصادفی X و Y مستقل و دارای توزیع های وایبول با پارامترهای شکل یکسان و اسکالر متفاوت می باشند، برآورد E- بیز و برآورد بیز سلسله مراتبی R، تحت توابع زیان مربع خطا و آنتروپی به دست آورده می شود. سپس با استفاده از روش شبیه سازی مونت کارلو، این برآوردهای جدید با هم و با برآورد بیز R مقایسه می شوند.
کلید واژگان: توزیع وایبول, برآورد E- بیز, برآورد بیز سلسله مراتبی, تابع زیان مربع خطا, تابع زیان آنتروپی, پارامتر تنش مقاومت, شبیه سازی مونت کارلو -
در این مقاله روش جدیدی برای تخمین پارامترهای توزیع بر نوع 12 بسط یافته با استفاده از اصل بیشینه سازی انتروپی بر پایه ی مقادیر رکورد k به کار گرفته شده است. از شبیه سازی مونت کارلو برای ارزیابی عملکرد این روش و مقایسه آن با روش های شناخته شده دیگر استفاده شده است. نتایج شیبیه سازی نشان دادند که روش اصل بیشینه سازی انتروپی عملکرد بهتری داشته است.کلید واژگان: اصل بیشینه راستنمایی, برآورد پارامتر, شبیه سازی مونت کارلو, توزیع بر نوع 12 بسط یافته, مقادیر رکورد kIn this paper a new method of parameter estimation was employed for extended Burr XII parameters using the principle of maximum entropy (POME) based on k-record values. The Monte Carlo simulation was applied to assess the performance of this method and compare it with some other well-known methods. The simulated results showed that POME performs better than the other methods.Keywords: POME, Parameter Estimation, Monte Carlo simulation, Extended Burr XII distribution, K-Records
-
آزمون فرضیه آماری یک روش موثر برای تصمیمگیری در مورد کارایی یک فرایند تولیدی میباشد. با در نظر گرفتن کیفیت فازی به جای حدود مشخصات فنی دقیق، میتوانیم تصمیمات مطمینتری برای بررسی توانایی کارایی فرایندهای تولیدی بگیریم. در این مقاله یک مطالعه کاربردی بر اساس کیفیت فازی با استفاده از شاخص یانگتینگ ارایه شده است. رویکرد پیشنهادی به کار بردهشده در این مطالعه کاربردی، یک تکنیک برای آزمودن توانایی یک فرایند نرمال در تولید محصولات در حدود مشخصات فازی از پیشتعیینشده میباشد. با توجه به پیچیدگی فرمولهای شاخصهای کارایی حتی تحت شرایط نرمال بودن داده ها، ممکن است با چالش عدم توانایی پیدا کردن توزیع آماری برآوردگر کارایی فرایند روبرو شویم. همچنین این چالش نیز برای آزمون کارایی فرایند بر اساس کیفیت فازی دیده میشود.
کلید واژگان: آزمون فرضیه ها, کیفیت فازی, کارایی فرایند, شبیه سازی مونت کارلوHypotheses testing is an effective technique for decision making on the manufacturing process capability. Considering fuzzy quality rather than precise specification limits, we can make more reliable decisions for investigating the manufacturing process capability. In this paper, an applied study on the basis of fuzzy quality using the Yongting’s index is presented. The proposed approach which is used in this applied study is a technique for testing the capability of a normal process in producing products within the preset fuzzy specification limits. The adversity to test process capability indices is complexity in the distribution of its natural estimator, even under the Normal distribution. Also, there is the challenge in testing process capability based on fuzzy quality. The non-parametric approach which is used to test the performance of a product based on fuzzy quality and random sampling techniques which is presented based on the Monte Carlo simulation method and can be generalized for various fuzzy qualities. This study is presented to investigate the quality of paint thickness in the automobile polishing process based on trapezoidal fuzzy quality. The numerical computations are presented to show the performance of the Monte Carlo simulation method for making reliable decisions in testing the Yongting’s index.
Keywords: Testing of Hypothesis, fuzzy control, Process capability index, Monte Carlo simulation -
Recently, it has been shown that the density based empirical likelihood concept extends and standardizes these methods, presenting a powerful approach for approximating optimal parametric likelihood ratio test statistics. In this article, we propose a density based empirical likelihood goodness of fit test for the Cauchy distribution. The properties of the test statistic are stated and the critical points are obtained. Power comparisons of the proposed test with some known competing tests are carried out via simulations. Our study shows that the proposed test is superior to the competitors in most of the considered cases and can confidently apply in practice. Finally, a financial data set is presented and analyzed.Keywords: Cauchy distribution, Empirical likelihood ratio, Goodness-of-fit test, Test power, Monte Carlo simulation
-
International Journal Of Nonlinear Analysis And Applications, Volume:13 Issue: 1, Winter-Spring 2022, PP 2127 -2135
In reducing the effects of collinearity, the ridge estimator (RE) has been consistently demonstrated to be an attractive shrinkage method. In application, when the response variable is binary data, the logistic regression model (LRM) is a well-known model. However, it is known that collinearity negatively affects the variance of maximum likelihood estimator of the LRM. To address this problem, a logistic ridge estimator was proposed by several authors. In this work, a Jackknifing logistic ridge estimator (NJLRE) is proposed and derived. The Monte Carlo simulation results recommend that the NJLRE estimator can bring significant improvement relative to other existing estimators. Furthermore, the real application results demonstrate that the NJLRE estimator outperforms both LRE and MLE in terms of predictive performance.
Keywords: Collinearity, Jackknife estimator, ridge estimator, logistic regression model, Monte Carlo simulation -
International Journal Of Nonlinear Analysis And Applications, Volume:13 Issue: 1, Winter-Spring 2022, PP 2675 -2684
The Liu estimator has been consistently demonstrated to be an attractive shrinkage method to reduce the effects of Inter-correlated (multicollinearity). The negative binomial regression model is a well-known model in the application when the response variable is non-negative integers or counts. However, it is known that multicollinearity negatively affects the variance of the maximum likelihood estimator of the negative binomial coefficients. To overcome this problem, a negative binomial Liu estimator has been proposed by numerous researchers. In this paper, a Jackknifed Liu-type negative binomial estimator (JNBLTE) is proposed and derived. The idea behind the JNBLTE is to decrease the shrinkage parameter and, therefore, the resultant estimator can be better with a small amount of bias. Our Monte Carlo simulation results suggest that the JNBLTE estimator can bring significant improvement relative to other existing estimators. In addition, the real application results demonstrate that the JNBLTE estimator outperforms both the negative binomial Liu estimator and maximum likelihood estimators in terms of predictive performance.
Keywords: Multicollinearity, Liu estimator, negative binomial regression model, shrinkage, Monte Carlo simulation -
International Journal Of Nonlinear Analysis And Applications, Volume:13 Issue: 1, Winter-Spring 2022, PP 3153 -3168
Modelling of count data has been of extreme interest to researchers. However, in practice, count data is often identified with overdispersion or underdispersion. The Conway Maxwell Poisson regression model (CMPRE) has been proven powerful in modelling count data with a wide range of dispersion. In regression modeling, it is known that multicollinearity negatively affects the variance of the maximum likelihood estimator. To address this problem, shrinkage estimators, such as Liu and Liu-type estimators have been consistently verified to be attractive to decrease the effects of multicollinearity. However, these shrinkage estimators are considered biased estimators. In this study, the jackknife approach and its modified version are proposed for modeling count data with CMPRE. These two estimators are proposed to reduce the effects of multicollinearity and the biasedness of using the Liu-type estimator simultaneously. The results of Monte Carlo simulation and real data recommend that the proposed estimators were significant improvement relative to other competitor estimators, in terms of absolute bias and mean squared error with superiority to the modified jackknifed Liu-type estimator.
Keywords: Multicollinearity, Liu-type estimator, Conway-Maxwell-Poisson regression model, Jackknife estimator, Monte Carlo simulation -
One of the advancements of the present century is the use of carbon nanotubes in the treatment of cancer. As the carbon nanotubes pass through the cell wall, the anticancer drug is transferred to the cancer tissue and released. The purpose of this project is to obtain the thermodynamic functions and potential energy of the interaction between melphalan anticancer drug and functionalized carbon nanotube. The potential energy of this interaction is obtained by Monte Carlo simulation at different temperatures in the gas, methanol and water phases and the thermodynamic functions of this interaction is obtained by quantum mechanics by the density function theory with B3LYP/6-311G basis set at different temperatures in the gas, methanol and water phases. The results show that the Gibbs free energy and entropy are a function of the solvent dielectric constant. So that the Gibbs free energy and entropy changes of reaction are decreases and increases respectively. Also the results of both methods indicate that the best environment for this interaction is water solvent.Keywords: Monte Carlo Simulation, melphalan, Interaction, Carbon Nanotube, thermodynamic
-
This study emphasizes on the mathematical modeling procedure of stock price behavior and option valuation in order to highlight the role and importance of advanced mathematics and subsequently computer software in financial analysis. To this end, following price process modeling and explaining the procedure of option pricing based on it, the resulting model is solved using advanced numerical methods and is executed by MATLAB software. As derivatives pricing models are based on price behavior of underling assets and are subject to change as a result of variation in the behavior of the asset, studying the price behavior of underlying asset is of significant importance. A number of such models (such as Geometric Brownian Motion and jump-diffusion model) are, therefore, analyzed in this article, and results of their execution based on real data from Tehran Stock Exchange total index are presented by parameter estimation and simulation methods and also by using numerical methods.Keywords: Stochastic Differential Equations, Stocks, Options, Finite Difference, Monte Carlo simulation
-
در این مقاله علاوه بر برآوردهای حداکثر درست نمایی و بیز، از روش جدید برآورد ای-بیز برای پارامتر مجهول و توابع قابلیت اعتماد و نرخ خطر توزیع نمایی معکوس تعمیم یافته، استفاده می شود. محاسبات براساس داده های سانسور نوع 2 و تحت تابع زیان درجه دوم خطا انجام می شود. این برآوردها براساس یک توزیع پیشین مزدوج برای پارامتر مجهول به دست می آیند. برای محاسبه این برآوردها، از سه توزیع پیشین متفاوت برای ابرپارامترها به منظور مقایسه نتایج استفاده شده است. رفتار مجانبی برآوردهای ای-بیز و ارتباط بین آنها نیز بحث می شود. در نهایت مقایسه ای بین برآوردهای حداکثر درست نمایی، بیز و ای-بیز با حجم نمونه مختلف و با استفاده از روش شبیه سازی مونت کارلو انجام می شود.
کلید واژگان: برآورد ای-بیز, داده های سانسور نوع 2, قابلیت اعتماد, نرخ خطر, شبیه سازی مونت کارلوIntroduction :
This paper is concerned with using the Maximum Likelihood, Bayes and a new method, E-Bayesian, estimations for computing estimates for the unknown parameter, reliability and hazard rate functions of the Generalized Inverted Exponential distribution. The estimates are derived based on a conjugate prior for the unknown parameter. E-Bayesian estimations are obtained based on three different prior distributions of the hyper parameters. Asymptotic behaviors of E-Bayesian estimations and relations among them have been discussed. The results are computed based on type-II censoring and squared error loss function. Finally, a comparison among the Maximum Likelihood, Bayes and E-Bayesian estimation methods in different sample sizes are made, using the Monte Carlo simulation, which shows that the new method is more efficient than other old methods and is easy to operate.
MethodSuppose the Generalized Inverted Exponential distribution and its unknown parameter, reliability and hazard rate functions. Then the estimates of functions of interest are derived based on type II censored samples of this distribution, using the Monte Carlo simulation.
Results :
Results show that the E-Bayesian method is more efficient than other old methods and is easy to operate. Also, the asymptotic behaviors of three E-Bayesian estimations are the same.
Keywords: E-Bayesian estimation, Type-II censoring, Reliability, Hazard Rate, Monte Carlo simulation -
International Journal Of Nonlinear Analysis And Applications, Volume:12 Issue: 1, Winter-Spring 2021, PP 2093 -2104
It is a challenge in the real application when modelling the relationship between the response variable and several explanatory variables when the existence of collinearity. Traditionally, in order to avoid this issue, several shrinkage estimators are proposed. Among them is the Kibria and Lukman estimator (K-L). In this study, a jackknifed version of the K-L estimator is proposed in the generalized linear model that combines the Jackknife procedure with the K-L estimator to reduce the biasedness. Our Monte Carlo simulation results and the real data application related to the inverse Gaussian regression model suggest that the proposed estimator can bring significant improvement relative to other competitor estimators, in terms of absolute bias and mean squared error.
Keywords: Collinearity, K-L estimator, Inverse Gaussian regression model, Jackknife estimator, Monte Carlo simulation -
We propose a new class of continuous distributions with two extra shape parameters named the Odd Log-Logistic Poisson-G family. Some of its mathematical properties including moments, quantile, generating functions and order statistics are obtained. We estimate the model parameters by the maximum likelihood method and present a Monte Carlo simulation study. The importance of the proposed family is demonstrated by means of three real data applications. Empirical results indicate that proposed family provides better fits than other well-known classes of distributions in real applications.
Keywords: Odd Log-Logistic-G family, Poisson-G family, Monte-Carlo simulation -
نمونه گیری یکی از مهم ترین بخش های علم آمار است. در هر تحقیق، پژوهشگر در پی یافتن روش مناسب برای جمع آوری نمونه و اطلاعات مربوط به آن است که کارا و کم هزینه باشد. در شرایطی که اندازه گیری واحدهای جامعه مشکل یا پرهزینه باشد، اما بتوان واحدهای جامعه را به سادگی و با کم ترین هزینه رتبه بندی کرد، روش نمونه گیری مجموعهرتبه دار مورد استفاده قرار می گیرد. در این مقاله ابتدا روش نمونه گیری مجموعه رتبه دار معرفی می شود. سپس چند روش برآورد واریانس توزیع نرمال با ترکیب برآوردگرهای بین گروهی و درون گروهی نااریب ارائه می شود. در نهایت برآوردگرهای ارائه شده با استفاده از پژوهش های شبیه سازی با یکدیگر مقایسه می شوند.کلید واژگان: توزیع نرمال, نمونه گیری مجموعه رتبه دار, نمونه گیری تصادفی ساده, کارایی, شبیه سازی مونت کارلوIntroductionIn some biological, environmental or ecological studies, there are situations in which obtaining exact measurements of sample units are much harder than ranking them in a set of small size without referring to their precise values. In these situations, ranked set sampling (RSS), proposed by McIntyre (1952), can be regarded as an alternative to the usual simple random sampling (SRS) to draw a more representative sample from the population of interest than what is possible in SRS. To draw a ranked set sample, one first draws n simple random samples, each of size n, from the population of interest and ranks them in an increasing magnitude. The ranking process is done without measuring sample units and therefore it need not to be accurate. One then identifies the ith sample unit from the ith sample for actual quantification (for i=1, …, n). Finally, he repeats this process m times (cycle) if he/she is required to obtain a sample of size mn. Since a ranked set sample contains information from both measured sample units and their corresponding ranks, one intuitively expects that statistical inference based on RSS to be more accurate than what is possible to obtain based on SRS.
This paper is concerned with problem of estimating variance of the normal distribution in RSS. Several methods of estimation of variance of the normal distribution are described and compared via a Monte Carlo simulation study.Material and methodsAll simulation studies in this paper have been done using R statistical software version R-3.3.1Results and discussionIn this paper, we consider estimation of the normal variance based on a ranked set sample with single (multiple) cycle(s) and propose different unbiased estimators for each case. Our simulation results indicate that the mean square error (MSE) of each estimator is decreased as the values of n or m increases while the other parameters are kept fixed. It is also found that the estimator based on combining variance estimators of within and between ranking classes has typically better performance than the others.ConclusionThe following results can be obtained based on our simulation study:•If there is a single cycle in RSS, then the proposed estimator in the case of single cycle beats Stokes-modified unbiased estimator.
•In the multiple cycle case in RSS, the estimator based on combining variance estimators of within and between ranking classes is the best one. ./files/site1/files/51/%D9%85%D9%87%D8%AF%D9%88%DB%8C_%D9%85%D9%86%D8%B4_%D8%A7%DB%8C%D8%B1%D8%A7%D9%86%D9%BE%D9%86%D8%A7%D9%87.pdfKeywords: Normal distribution, Ranked set sampling, Simple random sampling, Efficiency, Monte Carlo simulation -
گاهی اوقات وسیع بودن حوزه تغییرات پارامتر روی فضای پارامتر، باعث افزایش خطای برآوردگر پسین بیزی برآورد بیز می شود که در این صورت، برآوردهای E-بیز و بیز سلسله مراتبی می تواند جانشین های مناسبی برای برآورد بیز باشند. بنابر این در این مقاله، وقتی که و متغیرهای تصادفی مستقل و دارای توزیع های نمایی با پارامترهای مختلف می باشند، برآوردهای E-بیز و بیز سلسله مراتبی ، تحت تابع زیان مربع خطا به دست آورده می شود. سپس به کمک روش شبیه سازی مونت کارلو و دو مجموعه داده های واقعی، برآوردگرهای پیشهادی باهم و با برآورد بیز R مقایسه می شوند.کلید واژگان: برآورد E-بیز, برآورد بیز سلسله مراتبی, توزیع نمایی, تابع زیان مربع خطا, شبیه سازی مونت کارلوEstimate R=P(X>Y) in exponential distribution, based on E-Bayesian and hierarchical Bayesian methodsSometimes the extent of the parameter domain changes over the space of the parameter, increases the risk of posterior Bayesian. In this case, the empirical and hierarchical estimates can be a good substitute for bayesian estimation. In this study, when X and Y are two independent exponential distributions with different parameters, were estimated the E-Bayesian and hierarchical Bayesian for the under squared error loss function. This suggested methods, was compared with each other and with the Bayesian estimator using the Monte Carlo simulation and two set data.Keywords: E-Bayesian estimation, hierarchical Bayesian estimation, exponential distribution, squared error loss function, Monte Carlo simulation
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.