جستجوی مقالات مرتبط با کلیدواژه "جاذب زیستی" در نشریات گروه "زیست شناسی"
تکرار جستجوی کلیدواژه «جاذب زیستی» در نشریات گروه «علوم پایه»-
مقدمهاورانیوم به عنوان یکی از فلزات سنگین، یک رادیونوکلئید طبیعی است که به دلیل سمیت جدی و خاصیت پرتوزایی دارای اثرات مخرب بر روی سلامت انسان و محیط زیست می باشد. جذب زیستی یک فناوری ساده و مقرون به صرفه است که می تواند برای حذف فلزات سنگین و رادیونوکلئیدها از پساب ها به کار گرفته شود.مواد و روش هادر این پژوهش، زیست توده میکروکوکوس لوتئوس پیش تیمار شده با حرارت اتوکلاو استفاده گردید. سپس پارامترهای فیزیکوشیمیایی موثر بر جذب زیستی اورانیوم شامل دما، pH، غلظت اولیه اورانیوم و غلظت جاذب با استفاده از روش سطح پاسخ بررسی شدند.نتایجنتایج نشان داد که پارامتر های غلظت اولیه اورانیوم، مقدار جاذب و pH از لحاظ آماری (05/0>p-value) بر روی فرآیند جذب زیستی اورانیوم تاثیرگذار هستند. در مقابل، پارامتر دما از لحاظ آماری (05/0>p-value) بر روی فرآیند حذف اورانیوم توسط باکتری میکروکوکوس لوتئوس بدون تاثیر می باشد.بحث و نتیجه گیرینتایج مشخص کردند که زیست توده پیش تیمار شده در شرایط پیشنهاد شده توسط نرم افزار دیزاین اکسپرت (75/19 گرم بر لیتر زیست توده، دمای °C 14/32 و 33/3pH) قادر به حذف تقریبا 98/99 درصد اورانیوم از محیط آلوده به 11/26 میلی گرم بر لیتر اورانیوم می باشد که نشان دهنده پتانسیل ارزشمند آن در کاربردهای زیست پالایی اورانیوم از پساب های اسیدی آلوده با غلظت های پایین اورانیوم می باشد.کلید واژگان: اورانیوم, جاذب زیستی, طراحی آزمایش, رادیونوکلئید, زیست پالاییIntroductionUranium, as one of the heavy metals, is a natural radionuclide that has harmful effects on human health and the environment due to its serious toxicity and radiation properties. Biosorption is a simple and cost-effective technique that can be used for remove of heavy metals and Radionuclides from waste waters.Material and methodsIn this study, Micrococcus luteus biomass pretreated with autoclave heat was used. Then, physicochemical factor affecting the biosorption including biosorbent dose, initial uranium concentration, temperature and pH were investigated by Response Surface Methodology.ResultsThe results showed that the factor of initial uranium concentration, sorbent dose and pH statistically (p-value‹ 0.05) affect the uranium biosorption process. In contrast, temperature factor (p-value› 0.05) statistically have no effect on uranium removal by M. luteus. Discussion andconclusionThe results indicated that the pre-treated biomass under the conditions suggested by Design Expert software (19.75 g/liter of biomass, temperature 32.14 OC and pH 3.33) is able to remove approximately 99.98 percent of uranium from the contaminated area is 26.11 mg/liter of uranium, which shows its valuable potential in bioremediation applications of uranium from acidic wastewaters contaminated with low concentrations of uranium.Keywords: Uranium, Biosorbent, Design–Expert, Radionuclide, Bioremediation
-
مقدمه
آلودگی فلزات سنگین به یکی از نگرانی های جهانی تبدیل شده است. انتشار گسترده آنها در محیط زیست، مشکلات بسیاری را برای انسان ها ایجاد کرده است؛ بنابراین، یافتن جاذب های جدید برای حذف این آلاینده ها از محیط زیست اهمیت به سزایی دارد.
مواد و روشها:
در این پژوهش زیست توده باکتری سیتروباکتر فروندی به مدت 15 دقیقه در فشار 5/1 اتمسفر، در دمای 121 درجه سانتی گراد در اتوکلاو تیمار حرارتی شد. پس از آن، پارامترهای دما، pH، غلظت اولیه اورانیوم و مقدار جاذب، با استفاده از روش سطح پاسخ در نرم افزار دیزاین اکسپرت بهینه شدند.
نتایجنتایج به دست آمده نشان دادند پارامترهای دما و مقدار جاذب بر فرایند جذب زیستی اورانیوم توسط باکتری سیتروباکتر فروندی تیمار شده بدون تاثیر هستند (> p-value05/0). در مقابل، غلظت اولیه اورانیوم و pH بر فرایند جذب زیستی اورانیوم تاثیرگذار هستند (05/0>p-value). با افزایش غلظت اولیه اورانیوم از 10 میلی گرم بر لیتر تا 5/77 میلی گرم بر لیتر میزان حذف از 5/66 درصد به 92/99 درصد افزایش می یابد. سپس با افزایش غلظت اولیه اورانیوم از 5/77 میلی گرم بر لیتر تا 100 میلی گرم بر لیتر میزان حذف به 34/97 درصد کاهش می یابد. همچنین نتایج نشان دادند با افزایش pH از 2 تا 5 میزان حذف از 82/96 درصد به 01/79 درصد کاهش یافته است.
بحث و نتیجه گیری:
نتایج نشان دادند مدل پیشنهادشده توسط نرم افزار دیزاین اکسپرت به خوبی رفتار فرایند را پیش بینی کرده است و جذب زیستی در 89/2pH ، غلظت اولیه اورانیوم 71/53 میلی گرم بر لیتر، دمای 92/28 درجه سانتی گراد و مقدار جاذب 84/19 گرم بر لیتر بهینه می شود که برابر با حذف تقریبا 99/99 درصد اورانیوم از محیط آلوده است.
کلید واژگان: جاذب زیستی, پیش تیمار حرارتی, سیتروباکتر فروندی, اورانیوم, بهینه سازی, دیزاین اکسپرتIntroductionToxic heavy metal contamination of industrial water is a significant universal problem. They accumulate in living tissues throughout the food chain which has humans at its top. These toxic metals can cause accumulative poisoning, cancer, and brain damage. Uranium is one of the most serious heavy metals because of its high toxicity and radioactivity. Excessive amounts of uranium have found their way into the environment through the activities associated with the nuclear industry (1). Conventional methods for removing uranium from wastewater include precipitation, evaporation, ion exchange, membrane processing, and adsorption. Nevertheless, these methods have several disadvantages, such as high installation and operating costs, the requirement of preliminary treatment steps, the difficulty of treating the subsequently generated solid waste, and low efficiency at low metal concentration (2,3). Owing to an increase in environmental awareness, there has been an emphasis on the development of new environmentally friendly ways to decontaminate waters using low-cost methods and materials. In this study, microbial biomass has emerged as a complementary, economic, and eco-friendly device for controlling the mobility and bioavailability of metal ions (2,4). The present work evaluates the performance of the Citrobacter freundii biomass to remove uranium ions from aqueous solutions. The effect of pH, temperature, initial concentration, and sorbent dose on biosorption capacity is also studied.
Materials and MethodsMaterials: Citrobacter freundii bacteria used in this research with PTCC No. 1772 was purchased from the Scientific and Industrial Research Organization of Iran. Uranyl nitrate salt (UO2(NO3)2.6H2O) was obtained from the Research Institute of Nuclear Sciences and Technologies. Nutrient Broth culture medium, sulfuric acid, and sodium hydroxide and other materials used in this research were supplied from the Merck Company.Preparation of uranium solutions and biomass: A stock solution containing 1000 mg L-1 of U(VI) was prepared of UO2(NO3)4.6H2O. The working solutions were prepared daily from stock solutions. In this study, the biomass of Citrobacter freundii bacteria was heat treated in an autoclave at a temperature of 121°C for 15 minutes at a pressure of 1.5 atmospheres. Experimental design and batch biosorption studies: The design of the experiment was done using the response surface method by Design Expert software. Four variables, including initial uranium concentration (mg/l), temperature (°C), pH, and biosorbent dose (g/l), in five levels α-, -1, 0, +1, α+, 1 were used to design the experiment (Table 1). Therefore, 27 experiments were presented using a central composite design. The values of the variables and the obtained answers are shown in Table 2. Uranium biosorption experiments were performed by adding specified amounts of bacterial biomass in 20 ml Erlenmeyer flasks containing uranium solution with the concentration and pH corresponding to each experiment, with the specified temperature in the Shaker. After 90 minutes, each sample was centrifuged at 4500 rpm for 15 minutes at 4°C. Then, the remaining uranium in the solution was measured by ICP (Perkin Elmer/Optima 7300DV). The percentage of uranium removal (R) was calculated by equation 1: Where C0 and Cf are the initial and the final concentrations of the metal ion solutions (mg/l), respectively.Table 1- Variables and Levels of the Central Composite Design Method
ResultsBy using the RSM-CCD method, the optimization of the biosorption process was carried out. Table 2 shows the experimental results based on each point of the experimental design. Then, using analysis of variance (ANOVA), the obtained results were evaluated.The equation obtained for the biosorption efficiency of uranium by Citrobacter freundii is expressed as follows:Removal= +68.97045-1.43160 * C (ppm)+12.81296 * pH+1.08935 * T (0C)+2.89856 * M (g/l)+0.55737 * C (ppm) * pH+0.011459* C (ppm)* T (0C)+0.014961* C (ppm)* M (g/l)-0.32111 * pH * T (0C)-0.62783 * pH * M (g/l)-0.037633* T (0C) * M (g/l)-6.93488E-003* C (ppm)2-4.06361 * pH2Table 2- Values of Variables and Experimental Responses in the Response Surface Method.
Discussion and ConclusionThe F-value and p-value of the proposed model are equal to 5.03 and 0.0027, respectively, reflecting the accuracy of the proposed model. This model with R2 equal to 0.81 shows that the proposed model can well predict the experimental values. The results showed that the factor of initial uranium concentration and pH statistically affect (p-value‹ 0.05) the uranium biosorption process. In contrast, temperature and sorbent dose factor (p-value› 0.05) have no statistically effect on uranium removal by Citrobacter freundii. With increasing uranium concentration from 10 mg/l to 77.5 mg/l, the removal increases from %66.5 to %99/92. Then, with increasing uranium concentration from 77.5 mg/l to 100 mg/l, the removal decreases to %97.34. On the other hand, one of the most important effective parameters in biosorption is the pH of the solution. With increasing the pH from 2 to 5, the removal decreased from %96.82 to %79.01 due to the formation of uranyl complexes (5). In this research, the results indicated that the pre-treated biomass under the conditions suggested by Design Expert software (19.84 g/l of biomass, temperature 28.92 OC, pH 2.89 and initial uranium concentration 53.71 mg/l) is able to remove approximately 99.99 percent of uranium from the contaminated area, which shows valuable potential Citrobacter freundii in bioremediation applications of uranium from contaminated wastewaters.
Keywords: Biosorbent, Heat pretreatment, Citrobacter freundii, Uranium, Optimization, Design expert -
نشریه زیست شناسی میکروبی، پیاپی 17 (بهار 1395)، صص 185 -198مقدمهسلنیوم، عنصری با فعالیت های آنتی اکسیدانی است که در همئوستاز هورمون تیروئید، ایمنی و باروری نقش دارد. با وجود این، مسمومیت با سلنیوم (سلنوز) موجب ایجاد مشکلاتی برای انسان از جمله اختلالات سیستم عصبی، مشکلات معدی- روده ای و ریزش مو می شود. از این رو، این مطالعه با هدف غربال سازی جاذب زیستی باکتریایی مناسب به منظور حذف آلاینده سلنیوم از فاضلاب انجام شد.مواد و روش هادر این پژوهش، در ابتدا با استفاده از محیط کشت لوریا برتانی آگار تغییر یافته (mLBA) با غلظت معینی از نمک سلنات سدیم، جداسازی جدایه های باکتریایی از سه نمونه پساب و لجن جمع آوری شده از کارخانجات صنعتی خوزستان، انجام شد. پس از تعیین حداقل غلظت مهاری (MIC) و حداقل غلظت کشندگی (MBC)، میزان جذب و درصد کارایی پاکسازی فلز (%RE) با استفاده از نمونه های فعال و غیر فعال متابولیسمی یکی از جدایه های کارا و توسط دستگاه اسپکتروفتومتر جذب اتمی بررسی شد. شناسایی، با روش های ریخت شناختی ، بیوشیمیایی و مولکولی انجام شد.نتایجاز میان 73 جدایه باکتریایی به دست آمده در مرحله اول، 8 جدایه مقاوم به اکسی آنیون سلنات به دست آمد. در این میان جدایه AMS1-S8 به ترتیب با MIC و MBC معادل با 600 و 1200 میلی مولار برای مطالعات بیشتر انتخاب شد. نتایج به دست آمده در مرحله تعیین مکانیسم جذب نشان داد که میزان جذب در نمونه فعال متابولیسمی از نمونه های غیر فعال بیشتر است. بر اساس نتایج شناسایی مشخص شد که این جدایه، به جنس Enterobacter تعلق دارد. این جدایه با شماره ثبت JQ818822 در بانک جهانی ژن، ثبت شده است.بحث و نتیجه گیرینتایج نشان داد که زیست توده فعال جدایه منتخب، بیش ترین میزان جذب و %RE را داشته و در میان سایر جدایه ها، مقاومت نسبی بالایی در برابر سلنات دارد. بنابراین، می تواند گزینه ای کمابیش ایده آل برای اصلاح زیستی محیط های آلوده باشد.کلید واژگان: سلنیوم, مسمومیت, غربال گری, جاذب زیستیIntroductionSelenium is an element with antioxidant activities that plays roles in thyroid hormone homeostasis, immunity and also fertility. Nevertheless, selenium toxicity (selenosis) causes problems for humans such as abnormalities of the nervous system, gastrointestinal problems and hair loss. Thus, this study was performed with the aim of bacterial biosorbent isolation in order to remove selenium contaminant from wastewater.Materials And MethodsIn this research, at first using modified Luria- Bertani agar (mLBA) medium with certain concentration of sodium selenate salt, isolation of bacterial isolates was done from three collected wastewater and sludge samples from Khouzestan industrial factories. After determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the sorption capacity and the percentage of metal removal efficiency (%RE) were investigated by atomic absorption spectrophotometer using metabolically active and inactive samples belonging to an efficient isolate. Identification was performed by morphological, biochemical and molecular methods.ResultsAmong 73 attained bacterial isolates at the first stage, 8 selenate oxyanion resistant isolates were gathered. Among these, AMS1-S8 isolate with MIC= 600mM and MBC= 1200mM were selected for more studies. Attained results in sorption mechanism determination stage showed that the sorption capacity in metabolically active sample is more than the inactive samples. Based on the identification results, it is revealed that this isolate belongs to the Enterobacter genus. This isolate is deposited as accession JQ965667 in the GeneBank database.
Discussion andConclusionThe results showed that active biomass of selected isolate, have most sorption capacity and %RE and among the other isolates, have high partial resistance against selenate. Therefore, it can be a relatively ideal option for the bioremediation of polluted environments.Keywords: Selenium, Toxicity, Screening, Biosorbent
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.