جستجوی مقالات مرتبط با کلیدواژه "coupled map lattice" در نشریات گروه "شیمی"
تکرار جستجوی کلیدواژه «coupled map lattice» در نشریات گروه «علوم پایه»-
In this paper, the chaotic properties of the following Belusov-Zhabotinskii's reaction model is explored: alk+1=(1-η)θ(alk)+(1/2) η[θ(al-1k)-θ(al+1k)], where k is discrete time index, l is lattice side index with system size M, η∊ [0, 1) is coupling constant and $theta$ is a continuous map on W=[-1, 1]. This kind of system is a generalization of the chemical reaction model which was presented by García Guirao and Lampart in [Chaos of a coupled lattice system related with the Belusov–Zhabotinskii reaction, J. Math. Chem. 48 (2010) 159-164] and stated by Kaneko in [Globally coupled chaos violates the law of large numbers but not the central-limit theorem, Phys. Rev. Lett. 65 (1990) 1391-1394], and it is closely related to the Belusov-Zhabotinskii's reaction. In particular, it is shown that for any coupling constant η ∊ [0, 1/2), any r ∊ {1, 2, ...} and θ=Qr, the topological entropy of this system is greater than or equal to rlog(2-2η), and that this system is Li-Yorke chaotic and distributionally chaotic, where the map Q is defined by Q(a)=1-|1-2a|, a ∊ [0, 1], and Q(a)=-Q(-a), a ∊ [-1, 0]. Moreover, we also show that for any c, d with 0≤c≤ d≤ 1, η=0 and θ=Q, this system is distributionally (c, d)-chaotic.Keywords: Coupled map lattice, Distributional chaos, Principal measure, Chaos in the sense of Li-Yorke, Topological entropy
-
In this paper we continue to study the chaotic properties of the following lattice dynamical system: bji+1= a1 g(bji)+ a2 g(bj-1i)+ a3 g(bj+1i), where i is discrete time index, j is lattice side index with system size L, g is a selfmap on [0, 1] and a1+a2+a3 ∊ [0, 1] with a1+a2+a3=1 are coupling constants. In particular, it is shown that if g is turbulent (resp. erratic) then so is the above system, and that if there exists a g-connected family G with respect to disjointed compact subsets D1, D2, …, Dm, then there is a compact invariant set K'⊆D' such that F |K' is semi-conjugate to m-shift for any coupling constants a1+a2+a3 ∊ [0, 1] with a1+a2+a3=1, where D' ⊆ IL is nonempty and compact. Moreover, an example and two problems are given.Keywords: Coupled map lattice, Turbulence, Erratic property, Tent map
-
In this article, we further consider the above system. In particular, we give a sufficient condition under which the above system is Kato chaotic for $eta=0$ and a necessary condition for the above system to be Kato chaotic for $eta=0$. Moreover, it is deduced that for $eta=0$, if $Theta$ is P-chaotic then so is this system, where a continuous map $Theta$ from a compact metric space $Z$ to itself is said to be P-chaotic if it has the pseudo-orbit-tracing property and the closure of the set of all periodic points for $Theta$ is the space $Z$. Also, an example and three open problems are presented.
*The formula is not displayed correctly.
Keywords: Coupled map lattice, Kato's chaos, P-chaos, Li-Yorke's chaos, Tent map
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.