جستجوی مقالات مرتبط با کلیدواژه "energy storage" در نشریات گروه "شیمی"
تکرار جستجوی کلیدواژه «energy storage» در نشریات گروه «علوم پایه»-
Currently, storing energy in a suitable form that can be converted and released to the desired state is one of the challenges facing modern technologies. Energy storage not only reduces the mismatch between supply and demand, but also increases the efficiency and reliability of energy systems and plays a very important role in reducing energy loss. In this research, the nanofibers of polyethylene glycol as a phase change material and polyamide 6 as a preservative in pipelines have been simulated in different conditions via COMSOL Multiphysics 5.6 software. For this purpose, the oil is placed inside a tube and a cylindrical tank and the container is covered with a thin layer of polyethylene glycol-polyamide nanofibers. In the following, the thermophysical properties of composite nanofibers of phase change materials in different weight percentages were investigated and the effects of changes in temperature, density, viscosity and thermal conductivity on them were compared. The results of the research showed that the most suitable system for heat management is related to the nanoparticles of phase change materials with the highest weight percentage of polyethylene glycol. Also, the use of nanofibers of phase change materials is very effective in improving thermal management and temperature control and can be used as suitable materials for energy storage and transfer. In addition, with the passage of time, more heat is absorbed by polyethylene glycol and energy storage is done better.Keywords: Nanofibers, Phase Change Materials, Energy Storage, Thermal Management, Thermal Conductivity
-
Supercapacitors, also known as electric double-layer capacitors, have gained substantial attention for their remarkable energy storage capabilities, making them vital for numerous applications, including portable electronics, electric vehicles, and renewable energy systems. This review delves into the intricate world of carbon electrodes in supercapacitors, highlighting the diverse carbon materials used, such as activated carbons, carbon blacks, zeolite-template carbons, and graphene meso-sponges, and their significant impact on supercapacitor performance. Some research explores the synthesis of carbon electrodes using zeolite templates, which provide precise control over structural properties for enhancing performance in high-rate applications. The review also provides a comprehensive understanding of the fundamental principles of electrochemical cells, emphasizing the critical factors affecting carbon electrode performance, including surface functional groups, electrolyte composition, voltage range and stability, cycle life, operating temperature, current density, and rate capability. Recognizing the interconnected nature of these factors is essential for optimizing supercapacitor technology. This knowledge forms the foundation for ongoing research and innovation needed to advance supercapacitors, providing sustainable and efficient solutions to pressing energy challenges.
Keywords: Capacitance, Electrochemical Cell, Electrolyte, Energy Storage, Functional Group -
Phase Change Materials (PCMs) have recently found a wide range of new application opportunities. In this study, PCMs microcapsules have been synthesized with urea–formaldehyde polymer shell. The microcapsules have been characterized by FT-IR, SEM, TEM, and DSC analysis. Then, the thermophysical characteristics of the MEPCM suspension including the thermal conductivity, and viscosity have been measured at different particle concentration (2, 5 and 10 wt%) and different temperatures from 25 to 50 °C. New correlations are developed to predict the thermophysical characteristics of MEPCM suspensions. This work provides a practical and efficient synthetic strategy for the preparation of MEPCMs, which is expected to present a promising future in the field of energy storage.
Keywords: Microcapsule, Energy Storage, n-eicosane PCM with Urea-formaldehyde shell -
This systematic review critically examines recent advancements in electrochemical materials and methodologies for enhancing stability and performance in energy storage and analytical applications. The review encompasses a diverse range of topics, including the thermodynamic analysis of cathode-contacting material stability, nanostructure-modified electrodes for detecting emerging contaminants, electrochemical stability of Zn anodes, long-term cycling of inorganic Ca(NO3)2 salt electrodes, chemically modified electrode interactions for signal transduction, self-assembled iron oxide nanoparticle-modified electrodes for simultaneous Cd(II) and Pb(II) ion stripping analysis, molecularly imprinted polymers-based electrochemical sensors for catecholamine neurotransmitter determination, amino acid-fabricated glassy carbon electrodes for simultaneous sensing of heavy metal ions, and silver nanoparticles coupled with graphene nanoplatelets for detecting Rhodamine B in food products. By systematically analyzing these advancements, this review offers insights into the diverse strategies employed to enhance electrochemical system stability and sensitivity, serving as a valuable reference for researchers and engineers working in energy storage and analytical electrochemistry fields.Keywords: Electrochemical Stability, Nanomaterial Modification, Energy Storage, Analytical Detection, Emerging Contaminants
-
در عصر حاضر، ضرورت ذخیره سازی انرژی با توجه به کاربردهای گسترده آن، امری مهم و حیاتی محسوب می شود. باتری های جریانی اکسایشی کاهشی وانادیومی باقابلیت ذخیره سازی انرژی در اندازه های کلان، یکی از مهم ترین فناوری های الکتروشیمیایی به روز در جهان به شمار می آیند. طراحی خاص این باتری ها امکان افزایش ظرفیت ذخیره سازی تا مقدارهای بسیار بالا را فراهم نموده است. ازاین رو از این فناوری به عنوان تامین کننده برق شهرها در آینده ای نه چندان دور یاد می شود. در این پژوهش، ساخت، توسعه و شبیه سازی باتری جریانی وانادیومی به منظور طی کردن گامی مهم در برای دست یابی به دانش فنی این فناوری امیدبخش ذخیره سازی، موردنظر بوده است. در این خصوص نخست ساختار سل طراحی شده، معرفی شده است و روش انتخاب مواد و آماده سازی اولیه باتری برای راه اندازی شرح داده شده است. از سوی دیگر مدل ریاضی حاکم بر این سامانه ارایه شده است. پس ازآن و در گام پسین، بررسی تجربی و عددی عملکرد سامانه با اعتبارسنجی شبیه سازی انجام شده، دنبال شده است. بررسی و تحلیل عملکرد سیکلی، راندمان سامانه، اثر دانسیته جریان، اثر غلظت الکترولیت، روش توزیع فشار و توزیع سرعت الکترولیت ازجمله دیگر موارد موردتوجه در این پژوهش بوده است. مدل ریاضی ارایه شده و شبیه سازی انجام شده در این پژوهش با مقدار متوسط خطای 92/4% بر داده های تجربی چرخه های شارژ و تخلیه در دانسیته های جریان mA/cm2 40 و mA/cm2 60 منطبق شده است. نتیجه های به دست آمده از عملکرد سیکلی باتری نشان داد که متوسط راندمان کولنی سامانه در دانسیته های جریان mA/cm2 40، mA/cm2 50 و mA/cm2 60 به ترتیب برابر 25/90%، 45/92%، و 35/94% بوده است. در غلظت mol/L 1 و شدت جریان mL/min 40، ظرفیت ذخیره سازی mA.h 133 با افت فشار Pa 2400 به دست آمده که نشان دهنده عملکرد مناسب هیدرودینامیکی و سینتیکی سامانه طراحی شده است.کلید واژگان: ذخیره سازی انرژی, باتری جریانی وانادیومی, سل الکتروشیمیایی, مدل سازی و شبیه سازیVanadium redox flow batteries (VRFBs) with large energy storage capability are one of the most important electrochemical technologies in the world. The specific design of these batteries has made it possible to increase the storage capacity to very high values. Hence, this technology is referred to as the electricity supplier of cities in the not too distant future. In this article, fabrication, development, and the simulation of VRFBs in order to take an important step towards achieving technical knowledge of this promising storage technology, have been considered. In this regard, first, the designed cell structure was introduced and the method of material selection and initial preparation for the battery startup were described. In addition, the governing equations of the system were presented. Then, experimental and numerical investigation of the system performance was followed by simulation validation. Evaluation and analysis of cyclic performance, system efficiency, effect of current density, electrolyte concentration, pressure distribution and electrolyte velocity distribution were among other items of interest in the present work. The model predictions were validated with an average error of 4.92% against experimental data of charge and discharge cycles at current densities of 40 and 60 mA/cm2. The results obtained from cyclic performance of the battery clearly indicate that the average coulombic efficiencies of the system at current densities of 40, 50, and 60 mA/cm2 are 90.25%, 92.45%, and 94.35%, respectively. Moreover, the storage capacity of 133 mA. h with a pressure drop of 2400 Pa were obtained for the electrolyte concentration of 1 mol/L and the volumetric flow rate of 40 mL/min, which indicates the proper hydrodynamic and kinetic performance of the designed system.Keywords: Energy Storage, Vanadium redox flow battery, Electrochemical cell, modeling, simulation
-
در این مطالعه ویژگی های مکانیکی، رسانش گرمایی، و پایداری گرمایی آیروژل های هیبریدی گرافن اکسید/ اکتا(آمینوفنیل) پلی هدرال الیگومریک سیلسس کویی اکسان با تخلخل و مساحت سطح بالا و چگالی بسیار پایین مورد ارزیابی قرار گرفت. مجموعه خواصی مانند مساحت سطح و تخلخل بالا، و چگالی و رسانش گرمایی بسیار پایین باعث شده است تا این آیروژل پتانسیل بالایی در کاربردهای گسترده ای از جمله وسایل ذخیره و تبدیل انرژی (مانند ابرخازن، مواد الکترود و غیره)، جاذب آلاینده ها، و عایق گرمایی داشته باشند. خواص مکانیکی و پایداری گرمایی آیروژل های تهیه شده در مقایسه با آیروژل گرافن خالص گزارش شده، بهبود قابل توجهی نشان دادند. بررسی نتیجه های رسانش گرمایی آیروژل های گرافنی مورد مطالعه نشان داد که در انتقال گرما کل، سهم انتقال گرما از طریق فاز جامد نسبت به مکانیسم های دیگر انتقال گرما برتری دارد. این برتری حتی در دماهای بالاتر هم حفظ می شود. این امر بدین دلیل می باشد که به خاطر ضریب جذب مادون قرمز بالای آیروژل های گرافنی، انتقال گرمابا تابش به طور موثری مهار می شود. همچنین، اندازه پایین متوسط روزنه ها آیروژل های گرافنی مورد بررسی، میانگین مسیر آزاد مولکول های گاز را درون روزنه ها در دمای بالا محدود می کند و از این طریق سهم انتقال گرمایی گازی کاهش می یابد. از آنجایی که این آیروژل ها تخلخل بالای % 5/99 دارند، سهم انتقال گرما فاز جامد در انتقال گرما کل هم بسیار پایین می باشد. سرانجام، تاثیر محتوای مواد اولیه، چگالی و ریخت شناسی بر روی ویژگی های مکانیکی، پایداری گرمایی، و رسانش گرمایی مورد بررسی قرار گرفت و رابطه ساختار خواص آیروژل های تهیه شده تبیین شد.
کلید واژگان: آئروژل هیبریدی گرافن, ویژگی های مکانیکی, رسانش گرمایی, پایداری گرمایی, وسایل ذخیره و تبدیل انرژیIn this paper, the mechanical properties, thermal conductivity, and thermal stability of graphene oxide/octa(aminophenyl) polyhedral oligomeric silsesquioxane hybrid aerogels with high porosity, high surface area, and ultra-low density were investigated. The combination of properties such as high surface area and porosity, and extremely low density and thermal conductivity have made these aerogels as a great candidate in a wide range of applications including energy storage and conversion devices (like supercapacitors, electrode materials etc.), contaminant absorbers, and thermal insulation. The mechanical properties and thermal stability of the prepared aerogels showed a significant improvement compared to the reported graphene aerogels. Investigation of the thermal conductivity results of the obtained aerogels showed that the contribution of heat transfer through the solid phase, λs, is superior to other heat transfer mechanisms. This superiority is maintained even at higher temperatures. This is attributed to the high self-extinction coefficient of graphene aerogels, which heat transfer through radiation is effectively suppressed. Likewise, the lower average pore size of the obtained aerogels, limits the mean free path of gas molecules at high temperature and thereby reduces the contribution of gas thermal conductivity. Since these aerogels have porosity of above 99.5%, the contribution of solid phase thermal conductivity was also very low. Finally, the influence of raw material content, density and morphology on mechanical properties, thermal stability, and thermal conductivity was investigated and the structure-properties relationship of the prepared aerogels was explained.
Keywords: Graphene hybrid aerogels, Mechanical properties, Thermal conductivity, thermal stability, Energy storage, conversion device -
Phase Change Materials (PCMs) can be used as thermal energy storage systems in the form of latent heat. These materials are commonly enclosed in a suitable container, in order to prevent leakage of the molten PCM into the surrounding environment. In this study, palmitic acid and polyaniline were used as PCM and polymeric shell, respectively, to prepare a form stable composite. SiO2 nanoparticle was added to the composite to improve the thermal characteristics of the composite. The structure and morphology of the prepared form stable nanocomposite were investigated by Fourier Transform InfraRed (FT-IR) spectroscopy, Field Emission Scanning Electron Microscopy (FE-SEM), and X-Ray Diffract meter (XRD) tests. It was found that the synthesized nanocomposite was fabricated in the form of relatively smooth and compact spherical particles with a size of about 500 nm. Thermal properties of the prepared nanocomposite containing different concentrations of SiO2 nanoparticles were determined using Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) tests. It was found that the melting temperature and thermal conductivity of the polyaniline/palmitic acid composite increased by about 16% and 62%, respectively, when combined with 2 wt.% SiO2 nanoparticles. The obtained results revealed that the polyaniline/palmitic acid/2 wt.% SiO2 nanocomposite can be considered a suitable option for thermal energy storage applications.
Keywords: Phase Change Material, Polyaniline, Form stable, Energy Storage, Silica nanoparticle -
Copper benzene 1,3,5-tri carboxylates are widely used in research due to their numerous advantages. With abundant resources, excellent catalytic activity, and relatively simple synthetic procedures, Cu MOFs are ideal for activating starting materials and creating complex structural designs. The tunable conditions promote useful reactions such as oxidation, click chemistry, and Friedel-Crafts alkylation. All these properties make Cu MOFs an excellent choice for scientific research. This review provides an overview of this rapidly evolving research field, highlighting novel Cu3(BTC)2 synthesis strategies and Cu3(BTC)2 applications such as electrochemical sensing and metal ion extraction, energy storage, drug delivery, and its role as a catalyst.
Keywords: Copper catalyst, heterogenous catalysis, metal-organic frameworks, sensors, energy storage, Drug delivery -
The substitution of fossil fuels with renewable energies is a meaningful way to mitigate global warming and air pollution. Phase change materials could store and release a high amount of energy. The solidification phenomenon is an essential factor that should be considered for choosing Phase Change Materials (PCMs). In this work, attempts have been made to improve the thermophysical properties of paraffin as a PCM during the solidification process. 1-3 wt.% of Al2O3, CuO, TiO2, and graphene nanoparticles were used during the solidification process. No reports had yet been made on the effect of graphene nanoparticles versus metal oxide nanoparticles on the thermal properties of Nanoparticle-Enhanced Phase Change Materials (NEPCMs). The DSC, TGA, SEM, and FT-IR analyses were done to investigate the transition temperature, nanoparticle distribution, and nanocomposites morphology, respectively. It was seen that the addition of nanoparticles could effectively increase the thermal conductivities of paraffin. The maximum and minimum increases were in thermal conductivities were recorded in samples with 3wt.% of graphene and 1wt.% of TiO2. The results showed that selecting suitable nanocomposites depended on various parameters, such as the type of nanoparticles and the weight percentage of nanoparticles. The PCM nanocomposites can be used to control the thermal management of different systems. The results can be applied in thermal design and management concepts, especially in the solidification process.
Keywords: Solidification, Phase change material (PCM), Nanoparticle, Thermal properties, Energy Storage -
Iranian Journal of Chemistry and Chemical Engineering, Volume:40 Issue: 3, May-Jun 2021, PP 743 -757
Herein, flyweight organic-inorganic hybrid scaffolds were fabricated by self-assembly and reduction of graphene oxide via covalent reaction of octa(aminophenyl) polyhedral oligomeric silsesquioxane with graphene oxide. Octa(aminophenyl) polyhedral oligomeric silsesquioxane created a decorative coating on the graphene oxide surface. It acts as a nano-crosslinker, especially on the overlapped-zone of graphene oxide platelets to bind them close-fitting. The resulting hybrid hydrogel was transformed into aerogel by the solvent exchange process with liquid carbon dioxide, followed by liquid carbon dioxide supercritical drying. Different concentrations of graphene oxide and octa(aminophenyl) polyhedral oligomeric silsesquioxane were prepared and the structureproperty relationship of obtained aerogels is elucidated. Bulk density and porosity of the aerogels are located between the super-low values of 2.7 to 5.9 mg/cm3 and beyond 99.5 %, respectively. According to the adsorption-desorption isotherms of BET-technique, the surface area of obtained aerogels was in between 250 to 713 m2/g. The findings remark the potential application of obtained aerogels in the production of supercapacitors, lithium-ion batteries, solar cells, etc. in energy storage and conversion devices, electrode materials, sensors, gas/oil/dye adsorbents, and high-temperature insulators in the aerospace industry.
Keywords: Flyweight organic-inorganic aerogel, Graphene oxide hybrid aerogel, 3D porousarchitecture, Supercritical drying, Energy storage, conversion devices -
Energy problem is one of the serious concerns in modern society; therefore, we have to take hastily an effective action. Hence, researchers are looking for some attractive materials with low-cost, lightweight, and environmentally effective. Recently, 2D materials have taken notable recognition in the field of materials science for multiple energy application, because of its unique electronic and optical properties; and borophene is one of the 2D material which is commendatories than graphene. However, it has not much experimentally explored yet. This review discusses the synthesis process of borophene and discussed energy-related application such as energy storage, optoelectronic, photocatalytic activity, and hydrogen storage. Moreover, this work provides a summary of each application that could help to understand the importance of borophene materials for energy applications.Keywords: Borophene, Energy Storage, Optoelectronic, Hydrogen storage, Photocatalytic activity
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.