به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "molecular dynamic simulation" در نشریات گروه "شیمی"

تکرار جستجوی کلیدواژه «molecular dynamic simulation» در نشریات گروه «علوم پایه»
جستجوی molecular dynamic simulation در مقالات مجلات علمی
  • Sharif Abu Alrub, Suzan K. Alghamdi, Ahmed I. Ali, Rageh K. Hussein *, Dina Ezzat, Sally A. Eladly
    In this work, density functional theory and molecular dynamics calculations are used to explore the potential of pyridyl-fluoren-9 compounds for dye-sensitized solar cell applications. The study utilized two compounds: 2,7-bis(pyridin-3-ylethynyl) fluoren-9-ylidene) malononitrile (PyFM) and 2,7-bis(pyridin-3-ylethynyl) fluoren-9-one (PyFO). The substitution of a malononitrile group for the oxygen atom yielded PyFM from PyFO. PyFM exhibited smaller HOMO-LUMO energy gaps than PyFO due to the presence of the malononitrile group. The calculated quantum chemical descriptors of PyFM, such as hardness (η), softness (σ), and electronegativity (χ), revealed improved reactivity properties. The molecular orbital analysis identified a favorable intramolecular charge transfer between donor and acceptor components, classifying the studied molecules as D-π-A-π-D dye. The molecular electrostatic potential of PyFO and PyFM recognized their nucleophilic centers, which have significant potential for interaction with the electrophile atoms of the TiO2 surface. PyFM is predicted to exhibit high light-harvesting efficiency, as indicated by its broader, maximized, and redshifted absorbance peak at 597.02 nm in the calculated UV-vis absorption spectra. The estimated adsorption energies of PyFM dye pointed to a strong adsorption on the TiO2 surface. The study indicates that the performance of the pyridyl-fluoren-9 compound as solar cell dye can be enhanced by incorporating a malononitrile moiety instead of the oxygen atom in PyFO. This study encourages further exploration of pyridyl-functionalized fluorenes in dye-sensitized solar cell applications of pyridyl-functionalized fluoren-9 compounds in dye-sensitization solar cell applications.
    Keywords: Pyridyl-Fuoren-9, Malononitrile Group, DFT, TD-DFT, UV-Vis Absorption Spectra, Molecular Dynamic Simulation
  • Mehr Ali Mahmood Janlou, Hassan Sahebjamee *, Hamid Reza Alaei, Shademan Shokravi

    CP47 is one of the essential components of photosystem II (PSII) in green plants, green algae, and cyanobacteria; which is involved in the light reactions of photosynthesis. Various studies have shown that the binding of the extrinsic protein of 33 kDa (PsbO) to the large extrinsic loop of CP47 (E loop) is an essential photoautotrophic activity of the PSII complex. Moreover, the deletion of the amino acids between Gly-351 and Thr-365 within loop E failed to assemble stable PSII centers. In this study, using computational methods, the effect of Phenylalanine (Phe) mutation at position 363 on Synechocystis sp. PCC 6803 CP47 was investigated and then the mutant model was compared with the native one. Because the experimental 3D structure of Synechocystis sp. PCC 6803 CP47 and PsbO proteins are not available in the Protein Data Bank (PDB), the 3D structure of these proteins was modeled by homology modeling. After refining and energy minimization, the quality of protein geometry was assessed by different criteria such as PROCHECK and ProSA. Then, structural analysis of mutant and native models was performed with Molecular Dynamic (MD) simulation and docking method. The analysis of results obtained from MD simulation shows that F363R mutation affects the flexibility of some regions and especially leads to an increase in mutation region and changes the conformation of CP47. In addition, the results of docking studies indicate that F363R mutation can decrease buried surface area (BSA) at the interface region and decrease the binding energy of CP47 and PsbO. These data reinforce our hypothesis that an increase of flexibility at the position of F363 in the large extrinsic loop of CP47 may be an important factor in reducing interaction between CP47 and PsbO extrinsic protein and then water oxidation. oxidation.

    Keywords: Photosystem II, CP47, Mutation, Molecular dynamic simulation, Docking
  • Fater Iorhuna *, Adulfatah Muhammad, Abdullahi Ayuba, Aondofa Nyijime
    Through the use of theoretical techniques, this study investigated the corrosion inhibition potentials of a few chosen nitrogen-based five membered ring heterocycles, such as 2-methyl-1H-imidazole (2MI), 2-methyl-oxazole (2MO), 2,4,5-trimethyl-thizole (2TT), and 3-methyl-4,5-dihydro-1H-pyrole (MPP), on the surface of mild steel. To determine the potentials of these compounds in corrosion inhibition and to suggest a mechanism for the process, quantum chemical parameters, Fukui indices, and quench molecular dynamic simulation approaches were used. The corrosion inhibition potentials of the examined compounds were discovered to be caused by the existence of numerous hetero atoms rich in n-electrons, pi-bonds, molecular shape, and charge distribution. The outcomes demonstrated that each molecule's adsorption or binding energy is negative and comparatively low, less than the +100kcal/mol threshold. It has also been discovered that, depending on the parameters examined, the 2TT molecule may be more efficient in preventing corrosion on the Fe(1 1 1) surface. This is owing to the sp3 sulfur heteroatom in its structure, which is probably less electronegative than other sp3 heteroatoms (oxygen and nitrogen) in the compounds, in addition to the sp2 nitrogen each of them contained. from the results, all of the investigated compounds have the capacity to prevent mild steel corrosion. The molecules adhere to the physical adsorption process, the mechanism, the expected adsorption/binding energies, and the molecule's examined properties all indicate that 2TT is substantially a stronger corrosion inhibitor on Fe(1 1 1), in the following order: 2TT >MDP > 2MI > 2MO.
    Keywords: physisorption, quantum-chemical parameters, Molecular Dynamic Simulation, Binding energy, Fukui indices
  • Fater Iorhuna, Abdulfatah Muhammad, Muhammad Ayuba *
    Quantum chemical calculations and molecular dynamics simulation techniques were used to assess the corrosion inhibition potential of the compound qiunazoline (QZN) and two of its derivatives, 6-chloro-4-imino-3-phenyl-3,4-dihydro-1H qiunazoline-2-thione (QZT) and 6-chloro-4-imino-3-phenyl-3,4-dihydro-1H qiunazoline-2-one (QZO). The values of the quantum chemical parameters EHOMO, ELUMO, energy gap (∆E), the energy of back donation (∆Eb-d), dipole moment (μ), electronegativity (χ), global hardness (η), global electrophilicity index (ω), nucleophilicity (ε) and others were determined. The quantum chemical parameters calculated revealed that QZO is relatively more nucleophilic in nature and potentially a better inhibitor. The Fukui indices values discovered that the hetero atoms (N, O and S) of the studied compounds are responsible for their inhibitive characteristics. According to the calculated binding and adsorption energies obtained from the quenched molecular dynamic simulations, the relatively low values obtained of less than 100 kcal/mol results in the molecules being weakly adsorbed onto the surface of Al(1 1 0) through van der Waals forces and consequently obey the physical adsorption mechanism in the order: QZO>QZT> QZN. The examined molecules' varied bond lengths and angles before and after adsorption on the Al(1 1 0) surface demonstrate the nature of adsorption and the molecules' non-planarity on the surface of the metal. QZO and QZT have larger molecular sizes and additional hetero atoms (O and S), making them possibly more corrosion-inhibitive on Al(1 1 0) surfaces than QZN.
    Keywords: Adsorption, Quantum chemical parameters, Molecular Dynamic Simulation, Fukui indices, Van der Waals
  • Toughzaoui Abdelilah, Chedadi Oussama, Abdellah El Aissouq *, El Ouardi Youssef, Mohammed Bouachrine, Abdelkrim Ouammou

    TRPV1 are ion channels capable of sensing different stimuli, integrating and translating them into signal language. TRPV1 antagonists have attracted much attention for the treatment of various diseases related to the management of pain physiology and neurogenic inflammation, such as anti-inflammatory, antineoplastic, and anti-nociceptive effects. Here, we performed a 3D-QSAR, molecular docking, and MD simulations on a novel series of indole triazole derivatives as antagonists of TRPV1. The aim was to design novel potent TRPV1 antagonists with strong inhibitory activity. The significant 3D-QSAR models showed a good correlation between experimental and predicted activity. CoMSIA was used to construct the best 3D QSAR model using the PLS method showing correlative and predictive ability (R2=0.985. Q2=0.788. SEE=0.105). Electrostatic, steric, and hydrophobic fields play an important role in the variation of biological activity. Molecular Docking analysis was used to validate the 3D-QSAR methods and to explain the binding site and interactions between the ligands and the receptor. Based on these results, a novel series of compounds were predicted. The pharmacokinetic properties of predicted compounds were analyzed by drug-likeness and ADMET prediction. The best-docked compounds were subjected to MD simulation to affirm the final candidate molecules' conformational to confirm their dynamic behavior and stability.

    Keywords: 3D-QSAR, Molecular docking, Molecular Dynamic Simulation, TRPV1antagonist, Indole triazole
  • نسرین ترابی، فاطمه ابراهیمی*، غلامرضا مکتب داران
    پژوهش های اخیر نشان می دهند که ترابرد آب در نانولوله های کربنی بسیار سریع است. یکی از مهمترین دلایل برای این پدیده، هموار بودن نمودار انرژی برهم کنش آب با دیواره ی نانولوله ی کربنی است. نانولوله های کربنی در عمل ممکن است کامل هموار نباشند. این ویژگی می تواند به دلیل بروز نواقص ساختاری در هنگام ساخت و یا به صورت عمدی برای تهیه نانوکانال هایی با کاربردهای خاص ایجاد شود. در این پژوهش، ما با استفاده از شبیه سازی دینامیک مولکولی به بررسی سیستماتیک اثر زبری و میزان ترشوندگی دیواره بر ترابرد آب در نانولوله های کربنی ناهموار پرداختیم. در مدل ما نانولوله ی کربنی آرمچیر (10و10) به عنوان مرجع انتخاب شده و به نانولوله هایی با قطر بزرگتر ولی با طول یکسان متصل می شود و این الگو به تناوب و به دفعات دلخواه تکرار می شود. افزون بر اثر زبری دیواره، میزان ترشوندگی نانولوله نیز عامل مهمی است که با تغییر پارامتر برهم کنش شاره-دیواره قابل تنظیم است. نتایج ما نشان می دهد که ضریب اصطکاک شاره-دیواره در نانولوله های ناهموار نسبت به نانولوله های هموار افزایش می یابد و همچنین، با افزایش زبری در نانولوله ها (افزایش دامنه یا کاهش طول موج) ضریب اصطکاک نیز روندی افزایشی را نشان می دهد، در حالی که طول لغزش کاهش پیدا می کند. افزون بر این، مشاهده کردیم که با کاهش پارامترهای برهم کنشی و در نتیجه آب گریز شدن نانولوله ها ضریب اصطکاک شاره-دیواره در مقایسه با حالت آب دوست کاهش می یابد. سرانجام، از بررسی اطلاعات بدست آمده از شبیه سازی های انجام شده، بینش مفیدی از ساختار تعادلی آب و وابستگی کمیت هایی چون ضریب اصطکاک شاره- دیواره، گرانروی آب و بالاخره طول لغزش، به میزان ترشوندگی و زبری نانولوله کربنی بدست آورده ایم. ضمن آن که بررسی نتایج مربوط به مرحله نخست، یعنی پر شدن نانولوله، به دانش قبلی ما در زمینه اثر مویینگی در نانولوله های ناهموار عمق بیشتری می بخشد.
    کلید واژگان: نانولوله ی کربنی, شبیه سازی دینامیک مولکولی, زبری, گرانروی, ضریب اصطکاک
    Nasrin Torabi, Fatemeh Ebrahimi *, Gholamreza Maktabdaran
    Recent studies have demonstrated the ultrafast water flow through smooth carbon nanotubes. Several reasons have been suggested for this phenomena, one of the most important of which is the smoothening of the potential energy landscape felt by water molecules. In practice, carbon nanotubes may not have a perfectly simple smooth geometry. This feature can be cuased by any kind of defects during practical construction or deliberately created to provide nanochannels with specific applications. Molecular dynamics simulation method has been employed to study the effect of wall roughness and the rate of wettability of nanochannel’s wall on the transport of water in carbon nanotubes. We start with a (10,10) carbon nanotube (CNT) as our reference channel and generate nano-junctions by attaching other CNTs with larger radius but same length to it. This pattern is repeated alternately and as many as time desired. In adittion to the effect of wall roughness, another effective parameter is the wettability of nanochannel’s wall that can be adjusted by varying the interaction strength between tube wall and water molecules. Our results show that the fluid-wall friction coefficient increases compared to smooth nanotubes and also friction coefficient increases with increasing roughness in nanotubes (increasing the amplitude or decreasing the wavelength of roughness), while the slip legth decreases. In addition, we observed that by reducing the interaction parameters the friction coefficient decreases compared to the hydrophilic case. Finally, from the analysis of our simulations we obtain a useful insight into the equilibrium structure of water and the dependance of quantities such as friction coefficient, viscosity and slip length on wettability and roughness of carbon nanotubes. While the results of first stage, i.e the filling of nanotube with water, aid in improving our previous knowledge about the capillary effect in rough carbon nanotubes.
    Keywords: Carbon Nanotube, Molecular dynamic simulation, Roughness, Viscosity, Friction coefficient
  • کلثوم ملکشاهی فر، احسان علی پناهی، بهروز بیاتی*
    در این مطالعه، با استفاده از روش تجربی و شبیه سازی دینامیک مولکولی به بررسی عملکرد ماده فعال سطحی آنیونی سدیم دودسیل سولفات در کاهش کشش بین سطحی آب و نفت که در ازدیاد برداشت مهم است پرداخته شد. برای این منظور، کشش بین سطحی محلول آب و قطره دودکان در دو حالت بررسی شد که در حالت اول، محلول تنها شامل مولکول های آب و دودکان بود و در حالت دوم ماده فعال سطحی سدیم دودسیل سولفات به محلول افزوده شد. در حالت دوم سامانه ها به دو صورت انجام شد که در یکی سامانه ای که 32 مولکول ماده فعال سطحی، 120 مولکول دودکان و 800 مولکول آب داشت با عنوان سامانه (SDS1) معرفی شد، کشش بین سطحی(IFT) این سامانه از mN/m 83 /54 به mN/m 32/7 کاهش یافت و سامانه ای که در آن تعداد مولکول های آب و دودکان نصف شده بودند، یعنی 60 مولکول دودکان و 400 مولکول آب ولی با همان تعداد مولکول ماده فعال سطحی یعنی 32 مولکول که با عنوان سامانه (SDS2) معرفی شد، کشش بین سطحی از mN/m 06/59 بهmN/m  28/8 کاهش یافت. یافته ها نشان داد که در حالت دوم، افزودن ماده فعال سطحی آنیونی سدیم دودسیل سولفات به محلول آب و دودکان موجب کاهش کشش بین سطحی می شود، از سویی با بررسی و مقایسه تعداد مولکول های هر دو سامانه SDS1 و SDS2 در حالت دوم دریافت شد که نسبت مولکول ها در روند کاهش کشش بین سطحی تاثیر دارد. طبق یافته ها، هرچه تعداد مولکول های ماده فعال سطحی نسبت به آب و آلکان بیش تر باشد، کاهش کشش بین سطحی آن بیش تر است. همچنین برای بررسی اثر غلظت ماده فعال سطحی در تعداد ثابت آب و آلکان (16 مولکول ماده فعال سطحی، 120 مولکول دودکان و 800 مولکول آب)، شبیه سازی مولکولی انجام شد (SDS3). نتیجه ها نشان داد که کشش بین سطحی به mN/m 66/12 کاهش یافت. که عملکرد کم تری نسبت به حالت SDS1 دارد.
    کلید واژگان: کشش بین سطحی, ماده فعال سطحی آنیونی, شبیه سازی دینامیک مولکولی
    Kolsom Malekshahifar, Ehsan Alipanahi, Behrouz Bayati *
    In this study, the effect of anionic sodium dodecyl sulfate surfactant on the InterFacial Tension (IFT) of water and oil that is important in the Enhanced Oil Recovery (EOR) was studied using an experimental method and molecular dynamics simulation. For this purpose, the interfacial tension between the water solution and droplet decane was investigated in two conditions. In the first case, the solution consists of pure water molecules and chimneys, and in the second case, sodium dodecyl sulfate surfactant was added to the solution. In the SDS1 system, interfacial tension decreased from 54.83 mN /m to 7.32 mN /m and in the SDS2 system, the interfacial tension of 59.06 mN /m decreased by 8.28 mN /m. The results showed that the addition of anionic sodium dodecyl sulfate surfactant reduces interfacial tension in the second case. On the other hand, the number of molecules was evaluated and the molecular ratio was affected in the process of decreasing surface tension. The larger the number of water molecules and decane, the greater the ability to reduce the interfacial tension. According to the results, the higher  the number of surfactant molecules with respect to water and alkanes, the more interfacial tension reduction is observed. Also, molecular simulations were performed to investigate the effect of surfactant concentration on interfacial tension at constant water and alkane (16 surfactant molecules, 120 molecules of dihydrates, and 800 molecules of water) (SDS3). The results showed that the interfacial tension decreased to 12.66 mN / m which has a lower performance than the SDS1 mode.
    Keywords: Interfacial tension, Anion Surfactant, Molecular dynamic simulation, Enhanced oil recovery
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال