جستجوی مقالات مرتبط با کلیدواژه "particle swarm optimization (pso)" در نشریات گروه "برق"
تکرار جستجوی کلیدواژه «particle swarm optimization (pso)» در نشریات گروه «فنی و مهندسی»-
Artificial intelligence-based optimization algorithm was used to compute the switching angle values. In order to run the inverter with the lowest possible Total Harmonic Distortion (THD) value, it is suggested in this study to use an algorithm such as the Practical Swarm Algorithm (PSA). The multilevel inverter and optimization algorithm were created and simulated in this study using a MATLAB software. A frequency spectrum analysis was also conducted and found to be consistent with the theoretical analysis of the system. To provide practical results, the FPGA generates PWM signals that are appropriate for the inverter switches. On the Spartan-3E Starter set, the suggested control schemes were developed and put it into practice. Xilinx-ISE 12.1i design software and VHDL hardware description language were used to create the FPGA software. The suggested approaches have a number of benefits over conventional digital PWM techniques, including straightforward hardware implementation, minimum scaling of digital circuits, easy digital design, reconfigurable, and flexibility in adaptability. The outcomes of the experiment and the simulation agreed rather well.
Keywords: FPGA, Selective Harmonic Elimination (SHE), Harmonics, Particle Swarm Optimization (PSO) -
The household energy management system (HEMS) can optimally schedule home appliances for transferring loads from peak to off-peak times. Consumers of smart houses have HEM, renewable energy sources and storage systems to reduce the bill. In this article, a new HEM model based on the time of usage pricing planning with renewable energy systems is proposed to use the energy more efficiently. The new meta-heuristic whale optimization algorithm (WOA) and the common meta-heuristic of particle swarm optimization (PSO) are used to achieve that. To improve the performance, a mapping chaos theory (CWOA) is proposed. Also, an independent solar energy source is used as a support of the microgrid to achieve a better performance. It is concluded that the energy saving achieved by the proposed algorithm is able to decrease the electricity bill by about 40-50% rather than the WOA and PSO methods. The proposed system is simulated in MATLAB environment.
Keywords: Chaos Whale optimization (CWOA), Distributed Energy Resources (DER), Household Energy Management System (HEMS), Particle Swarm Optimization (PSO), Renewable Energy Systems (RES), Smart time Scheduling (SS) -
In recent years, Microgrids in integration with Distributed Energy Resources (DERs) are playing as one of the key models for resolving the current energy problem by offering sustainable and clean electricity. Selecting the best DER cost and corresponding energy storage size is essential for the reliable, cost-effective, and efficient operation of the electric power system. In this paper, the real-time load data of Bengaluru city (Karnataka, India) for different seasons is taken for optimization of a grid-connected DERs-based Microgrid system. This paper presents an optimal sizing of the battery, minimum operating cost and, reduction in battery charging cost to meet the overall load demand. The optimization and analysis are done using meta-heuristic, Artificial Intelligence (AI), and Ensemble Learning-based techniques such as Particle Swarm Optimization (PSO), Artificial Neural Network (ANN), and Random Forest (RF) model for different seasons i.e., winter, spring & autumn, summer and monsoon considering three different cases. The outcome shows that the ensemble learning-based Random Forest (RF) model gives maximum savings as compared to other optimization techniques.
Keywords: Artificial Neural Network (ANN), Battery Energy Management System (BESS), Distributed Energy Resources (DERs), Microgrid, Particle Swarm Optimization (PSO), Random Forest (RF) -
Photovoltaic (PV) panel produces electricity depending on a variety of characteristics, including the PV module model, design specifications, and ambient circumstances such as temperature and sun irradiation. To analyze and model the effect of these factors on PV performance, a PV model is significant to be studied and modeled in advance. It is desirable to be compatible with the real-physical behavior of the PV panel. This paper presents mathematical modeling, design, and simulation of the three-diode model (3DM) MPPT controller instead of using conventional single/double diode PV models. The proposed PV model is analyzed, verified, and simulated at various temperature and irradiance levels. Furthermore, Particle Swarm Optimization (PSO) as a multi-objective algorithm is used for the Maximum Power Point Tracking MPPT controller to enhance the performance of the module and PV array system. A DC/DC boost converter is combined with the proposed 3DM model and connected through a resistive load. Results show that adopting PSO-based MPPT improves the performance of the PV panel compared to the traditional MPPT and verified the theoretical background.
Keywords: Three Diode Model (3DM), Photovoltaic Panel, Particle Swarm Optimization (PSO), Maximum Power Point Tracking (MPPT), Double Diode Model -
رایانش ابری برپایه روش پرداخت به ازای مصرف، نوع جدیدی از پردازش را برای کاربران فراهم می نماید تا منابع مورد نیاز برنامه های کاربردی و سیستم ها را در سطوح مختلف تخصیص دهد. از اینرو تخصیص منابع در رایانش ابری، بسیار مهم می باشد. در این پژوهش، الگوریتمی برای تخصیص منابع برپایه منطق فازی ارایه شده است. میزان بهره وری منابع، رضایت کاربران و سود فراهم کنندگان سرویس به عنوان پارامترهای هدف در ارزیابی این الگوریتم در نظر گرفته شده اند. درمرحله اول تعداد 100 درخواست در بین 9 ماشین فیزیکی توزیع شده اند و توسط الگوریتم فازی تخصیص منابع انجام شده است. 95 درصد درخواست ها پاسخ داده شده و بهره وری منابع نیز 61.61 درصد حاصل شده است. در مرحله بعد با ترکیب الگوریتم فازی با PSO، عملیات تخصیص منابع به درخواست ها انجام شده است. مقایسه نتایج نشان می دهد که بهره وری ماشین های فیزیکی در الگوریتم ترکیبی فازی و PSO به میزان 0.5 درصد بهبود یافته است. همچنین در الگوریتم ترکیبی، یک درصد پاسخ گویی به درخواست های کاربران ارتقاء یافته است که سود بیشتر فراهم کنندگان سرویس و رضایت بیشتر مشتریان را سبب می شود.
کلید واژگان: رایانش ابری, تخصیص منایع, منطق فازی, الگوریتم بهینه سازی ازدحام ذرات (PSO), بهره وری منابعJournal of Iranian Association of Electrical and Electronics Engineers, Volume:20 Issue: 1, 2023, PP 43 -49Cloud computing gives a large quantity of processing possibilities and heterogeneous resources, meeting the prerequisites of numerous applications at diverse levels. Therefore, resource allocation is vital in cloud computing. Resource allocation is a technique that resources such as CPU, RAM, and disk in cloud data centers are divided among cloud users. The resource utilization, cloud service provider profit, and user satisfaction are the common objectives of the proposed algorithms. In this study, the algorithm is based on fuzzy logic and tries to achieve better results than other resource allocation algorithms by using meta-heuristic methods. After designing the preliminary fuzzy inference system (FIS), the use of meta-heuristic algorithms is ended up tuning the FIS parameters. By adjusting the parameters, membership functions are improved and finally a trained FIS is delivered. PSO has been used to train the fuzzy system. The fuzzy resource allocation algorithm responded 95% of the requests and achieved 61.61% of the resource efficiency, while the fuzzy-PSO algorithm answered 96% of the requests and improved the resource utilization by 0.5%. The results have shown that the application of PSO improves fuzzy resource allocation efficiency. More requests are answered and it increases resource utilization.
Keywords: Cloud Computing, Resource Allocation, Fuzzy Logic, Particle Swarm Optimization (PSO), Resource Utilization -
یکی از مسایل کلیدی در بهره برداری بهینه از توربینهای بادی مبتنی بر ژنراتورهای القایی دوسو تغذیه (DFIG)، بهینه سازی پارامترهای کنترلی نسبتا زیادی است که در این سیستم ها وجود دارند. اما، مشکل اصلی تعداد بالای پارامترهای کنترلی و غیرخطی بودن مدل این سیستم ها است که حل مساله بهینه سازی را بسیار زمانبر و در برخی موارد واگرا می کند. در این مقاله، بمنظور بهینه سازی پارامترهای کنترلی یک روش مبتنی بر بهینه سازی تجمع ذرات (PSO) پیشنهاد شده است. در این روش، پس از خطی سازی مدل سیستم، مقادیر ویژه سیستم بصورت تابعی از پارامترهای کنترلی مورد بررسی قرار می گیرند. با بررسی حساسیت مقادیر ویژه به پارامترهای کنترلی، پارامترهای حساسیت برانگیزتر شناسایی می شوند و بر اساس روش PSO مورد بهینه سازی قرار می گیرند. صحت و کارایی روش پیشنهادی از طریق شبیه سازی در محیط نرم افزار MATLAB مورد بررسی قرار گرفته است.کلید واژگان: توربینهای بادی, ژنراتورهای القایی دوسو تغذیه (DFIG), بهینه سازی, بهینه سازی تجمع ذرات (PSO), آنالیز حساسیتJournal of Technovations of Electrical Engineering in Green Energy System, Volume:1 Issue: 3, 2022, PP 75 -90One of the key issues in the optimal operation of DFIG-based wind turbines is the optimization of relatively large control parameters that exist in these systems. However, the main problem is the high number of control parameters and the nonlinearity of the model of these systems, which makes solving the optimization problem very time-consuming and divergent in some cases. In this article, in order to optimize the control parameters, a method based on particle swarm optimization (PSO) is proposed. In this method, after linearization of the system model, the eigenvalues of the system are extracted as a function of the control parameters. By examining the sensitivity of eigenvalues to control parameters, more sensitive parameters are identified and optimized based on the PSO method. The performance of the proposed method has been investigated through simulation in the MATLAB software environment.Keywords: Wind Turbines, Doubly fed induction generators (DFIG), Optimization, Particle Swarm Optimization (PSO), Sensitivity analysis
-
Posterior crossbite is a common malocclusion disorder in the primary dentition that strongly affects masticatory function. To the best of the author’s knowledge, for the first time, this article presents a reasonable and computationally efficient diagnostic system for detecting characteristics between children with and without unilateral posterior crossbite (UPCB) in the primary dentition from the surface electromyography (sEMG) activity of masticatory muscles. In this study, 40 children (4–6y) were selected and divided into UPCB (n = 20) and normal occlusion (NOccl; n = 20) groups. The preferred chewing side was determined using a visual spot-checking method. The chewing rate was determined as the average of two chewing cycles. The sEMG activity of the bilateral masticatory muscles was recorded during two 20-s gum-chewing sequences. The data of the subjects were diagnosed by the dentist. In this study, the fast Fourier transform (FFT) analysis was applied to sEMG signals recorded from subjects. The number of FFT coefficients had been selected by using Logistic Regression (LR) methodology. Then the ability of a multilayer perceptron artificial neural network (MLPANN) in the diagnosis of neuromuscular disorders in investigated. To find the best neuron weights and structures for MLPANN, particle swarm optimization (PSO) was utilized. Results showed the proficiency of the suggested diagnostic system for the classification of EMG signals. The proposed method can be utilized in clinical applications for diagnoses of unilateral posterior crossbite.
Keywords: posterior crossbite, surface electromyography, multilayer perceptron artificial neural network (MLPANN), Particle swarm optimization (PSO) -
Determining the location and size of the wind resources in the distribution network from the perspective of the distribution network operator using a hunting search (HUS) algorithm
The development of electric energy consumption, the high cost of installation of large power plants, the development of transmission lines, price jumps, running out of fossil fuels, environmental pollution and competitive space power systems render the use of distributed generation sources with significant growth.Among the benefits of these resources, reducing losses, improving voltage profile and power quality, improving reliability indices and reducing subscribers' interruptions can be mentioned. The important issue regarding DGs is the placement problem and determining the size of these resources. Improper placement of these resources and their inept production, not only does not improve the network performance, but also it may have adverse consequences on the network voltage profile and losses. Therefore, placement and determining the optimal size of DGs is one of the key issues in distribution system development planning from the perspective of distribution network operator which is addressed in this paper. In this paper, placement and size determination of wind turbines in distribution networks is studied to improve reliability indices. The reliability indices considered are System Average Interruption Frequency Index (SAIFI), System Average Interruption Duration Index (SAIDI), Average Service Availability Index (ASAI) and ENS. Placement optimization problem and size determination of wind distributed generation sources have been conducted using hunting search (HuS) algorithm, and the results are compared to particle swarm optimization (PSO). The positive effect of wind generators on improving reliability, as well as the efficiency of the proposed method is studied through simulations on 8 bus radial network.
Keywords: Distribution network operator, Wind turbine, Hunting Search (HuS) algorithm, particle swarm optimization (PSO), Reliability enhancement -
One of the trends in modern management is the consideration of the principle of customer orientation and customer satisfaction. Following this approach, online shopping, as one of the goods and services distribution channels, is also inclined to maintain and expand relations with customers. Nonetheless, what has become even more highlighted in the competition arena is going beyond customer satisfaction by predicting the customers’ behavior in order to properly respond to their needs and ultimately, establish loyalty. One of the methods used to know the customers is the clustering approach. Clustering is a data mining technique that takes a number of items and places them in clusters based on their attributes. One of the problems of the k-means clustering is that it has no specific method for primary determination or calculation of the cluster centers. Therefore, in order to optimize the clusters, we use the particle swarm optimization (PSO) algorithm. In the end, we analyze these clusters using the RFM model to analyze the customers’ behavior. What is achieved by analysis of each cluster is finding the cluster of the most loyal customers. In this study, we specify the number of optimized clusters using the k-means clustering algorithm. Then, we use the obtained number of clusters for the primary adjustment in the particle swarm optimization algorithm. Finally, we score the achieved clusters by the RFM method so that we can identify the most loyal customers that are placed in the cluster with the highest score.Keywords: Commercial Websites, Clustering, Customer Behavior Analysis, k-means clustering, Particle Swarm Optimization (PSO)
-
Transformers are one of the most valuable assets of power systems. Maintenance and condition assessment of transformers has become one of the concerns of researchers due to a huge number of transformers has been approached to the end of their lifetimes. Transformer’s lifetime depends on the life of its insulation and the insulation’s life is strongly influenced by its moisture attraction as well. Thus, regarding the importance of moisture analysis, in this paper, a new method is introduced for moisture content determination in the transformer insulation system. The introduced method uses the dielectric response analysis in the frequency domain based on heuristic algorithms such as genetic algorithm and particle swarm optimization. First, the master curve of the dielectric response is modeled. Afterward, using the proposed method the master curve and the measured dielectric response curves are compared. By analyzing the comparison results, the moisture content of the paper insulation, the electrical conductivity of the insulating oil, and the dielectric model dimensions are determined. Finally, the proposed methods are applied to several practical samples and their capabilities are compared to the well-known conventional method.Keywords: Transformer Insulation, Moisture, Dielectric Frequency Response (DFR) Analysis, Genetic Algorithm (GA), Particle swarm optimization (PSO)
-
In recent decades, the development of telecommunications infrastructure has led to the rapid exchange of data between the distribution network components and the control center in many developed countries. Considering the numerous benefits of the Distributed Generators (DGs), these changes have made more motivations for distribution companies to utilize these kinds of generators more than ever before. The Volt & Var control in distribution networks is one of the greatest control plans which can be influenced via DGs. In this study, a new approach is presented for the Volt & Var control which the output reactive powers of the DGs, Static Var Compensators (SVCs), Load Tap Changers (LTCs), Interruptible Load (IL), and the settings of the local controllers are selected as control variables. The proposed approach is a non–linear optimization problem; hence, a novel and robust meta–heuristic algorithm based on the Harmony Search Algorithm (HSA) is presented with high-speed converge. Also, this paper presents an approach to incorporate the model of the DGs and SVCs in the load flow equations of distribution systems. The feasibility and effectiveness of the proposed approach are illustrated on a real–life distribution network, part of the Tehran province electrical distribution network.Keywords: Distributed Generation (DG), Distribution Network, Particle swarm optimization (PSO), Volt, Var control
-
Scientia Iranica, Volume:27 Issue: 5, Sep Oct 2020, PP 2572 -2591Resource constrained project scheduling problem with multiple routes for flexible project activities (RCPSP-MR) is a generalization of the RCPSP, in which for the implementation of each flexible activity in main structure of the project, several exclusive sub-networks are considered. Each sub-network is regarded as a route for the flexible activity. The routes are considered for each flexible activity that are varied in terms of: 1) Number of activities required to execute; 2) Precedence relationship between activates; 3) Allocation of different renewable and nonrenewable resources to each activity; and 4) Effectiveness on the duration and cost of project completion. In this paper, a new mathematical formulation of RCPSP-MR is firstly presented. Then, two solving approaches based on particle swarm optimization (PSO) and genetic algorithm (GA) are proposed to minimize costs of project completion. To evaluate the effectiveness of these proposed approaches, 50 problems (in very small, small, medium, and large-sized test problems) are designed and then are solved; Finally, comparisons are provided. Computational results show that the proposed GA generates high-quality solutions in a timely fashion.Keywords: Resource constrained project scheduling problem (RCPSP), flexible activities, multiple routes, particle swarm optimization (PSO), genetic algorithm (GA)
-
Scientia Iranica, Volume:27 Issue: 3, May-Jun 2020, PP 1450 -1466The original version of Grey Wolf Optimization (GWO) algorithm has small number of disadvantages of low solving accuracy, bad local searching ability and slow convergence rate. In order to overcome these disadvantages of Grey Wolf Optimizer, a new version of Grey Wolf Optimizer algorithm has been proposed by modifying the encircling behavior and position update equations of Grey Wolf Optimization Algorithm. The accuracy and convergence performance of modified variant is tested on several well known classical further more like sine dataset and cantilever beam design functions. For verification, the results are compared with some of the most powerful well known algorithms i.e. Particle Swarm Optimization, Grey Wolf Optimizer and Mean Grey Wolf Optimization. The experimental solutions demonstrate that the modified variant is able to provide very competitive solutions in terms of improved minimum objective function value, maximum objective function value, mean, standard deviation and convergence rate.Keywords: particle swarm optimization (PSO), Grey Wolf Optimization (GWO), Mean Grey Wolf Optimization, Meta-heuristics
-
برای بهبود پایداری سیستم قدرت طراحی هم زمان پایدارساز سیستم قدرت (PSS) و پارامترهای کنترل کننده جبران ساز سنکرون استاتیکی (STATCOM) با استفاده از الگوریتم کلونی زنبور عسل (ABC) به صورت یک مسیله بهینه سازی در این مقاله ارایه شده است. الگوریتم کلونی زنبور یک هوش جمعی بر پایه الگوریتم بهینه سازی و با الهام از رفتار تغذیه زنبور عسل در پیدا کردن غذا است. همگرایی سریع و دقت بالا از قابلیت های این الگوریتم است. اثر بخشی و توان مندی الگوریتم کلونی زنبور با شبیه سازی غیر خطی یک سیستم قدرت دو ناحیه ای شامل چهار ماشینه نشان داده شده و با روش بهینه سازی ازدحام ذرات (PSO) مقایسه می گردد. طراحی هم زمان پارامترهای کنترل کننده و پایدارساز سیستم قدرت با الگوریتم کلونی زنبور نسبت به حالت بدون بهینه سازی باعث افزایش سرعت میرایی نوسانات و بهبود پایداری سیستم قدرت می شود. نتایج شبیه سازی با استفاده از نرم افزار متلب برای شرایط مختلف سیستم ارایه شده است.
کلید واژگان: جبران کننده سنکرون استاتیکی, پایدارساز سیستم قدرت, الگوریتم کلونی زنبور عسل, پایداریTo improve the stability of the power system, the design of a PSS and STATCOM controller parameters using ABC is presented as an optimization problem in this paper. The ABC is a collective intelligence based on the optimization algorithm and inspired by the bee feeding behavior in finding food. Fast convergence and high accuracy are the capabilities of this algorithm. The effectiveness and robustness of the bee colony algorithm are shown by nonlinear simulation of a two-area power system consisting of four machines and compared with the particle swarm optimization method. Simultaneous design of power system controller and stabilizer parameters with bee cloning algorithm over non-optimized mode increases oscillation damping speed and improves power system stability. The simulation results are presented using MATLAB software for different system conditions.
Keywords: : Power system stabilizer (PSS), Static synchronous compensator (STATCOM), Artificial bee colony (ABC), Particle swarm optimization (PSO), Stability -
سیگنال های الکتروانسفالوگرام (EEG)[i]، فعالیت های الکتریکی سلول های عصبی مغز را نشان می دهند. استخراج سیگنال EEG روشی غیرتهاجمی است که برای تشخیص فعالیت های غیرعادی مغز مفید است. تشنج یکی از انواع فعالیت های غیرعادی مغز و مهم ترین تظاهر بیماری صرع است. دشارژهای صرعی شکل (امواج سوزنی)[ii] مهم ترین مشخصه سیگنال های فرد درحال تشنج است. با آشکارسازی امواج سوزنی، امکان تشخیص بیماری صرع از سیگنال EEG وجود دارد. سیگنال های EEG از نوع سیگنال های غیرایستان هستند؛ پس تبدیل موجک[iii] که قدرت تفکیک مناسب زمانی و فرکانسی دارد، گزینه مناسبی برای استخراج ویژگی های سیگنال های EEG است. در این مقاله، پس از مرحله استخراج ویژگی، با استفاده از تبدیل موجک، شبکه های عصبی مصنوعی (ANN)[iv] برای طبقه بندی سیگنال های سالم و سیگنال های دارای بیماری صرع استفاده می شوند. همچنین، الگوریتم بهینه سازی انبوه ذرات (PSO)[v] روشی جدید برای انتخاب وزن ها و بایاس های شبکه است تا عملکرد شبکه بهبود یابد. نتایج پیاده سازی الگوریتم پیشنهادی، صحت 2/96% را داشته اند که نسبت به روش های موجود، طبقه بندی سیگنال های EEG عملکرد بهتری را نشان می دهد.
کلید واژگان: الکتروانسفالوگرام, الگوریتم بهینه سازی انبوه ذرات, بیماری صرع, تبدیل موجک, تشنجElectroencephalogram signals (EEGs) show the electrical activity of brain neurons. EEG is a non-invasive method that can be used to detect abnormal brain activities. Seizure is one of these abnormal activities and is the most common manifestation of epilepsy. Spikes are the most important characteristic of the seizure prone EEG signals. By detecting spikes, it is possible to detect epileptic seizures from EEG signals. EEG signals are non-stationary signals, so the wavelet transform that has appropriate time and frequency resolution can be a good option for extracting features of EEG signals. In this paper, after the extraction process using wavelet transform, artificial neural networks (ANNs) are used to classify healthy and epileptic signals. Particle swarm optimization (PSO) is also used as a novel approach to select weights and biases of network to improve network performance. The results of the implementation of the proposed algorithm have a 96.2% accuracy, which shows acceptable performance compared to existing methods.
Keywords: Electroencephalogram, Particle Swarm Optimization (PSO), epilepsy, wavelet transform, Seizure -
امروزه به کارگیری انرژی های تجدید پذیر نه تنها به یک موضوع بدیهی تبدیل شده است بلکه بعضا به کارگیری بیش از پیش آن ها، خود موجب بروز چالش های بهره برداری جدیدی در شبکه شده است. در حقیقت افزایش ضریب نفوذ این قبیل منابع تولید توان متغیر و نوسانی، در کنار مزایای متعدد آن ها، همواره با نگرانی های مختلفی همچون حفظ حاشیه امنیت و پایداری ولتاژ شبکه همراه بوده است. در این مقاله یک روش جدید سناریوبنیان برای برنامه ریزی چندمعیاره طرح های توسعه مزارع بادی بزرگ با رویکرد مدیریت پروژه و به منظور کمینه سازی هزینه تراز شده انرژی و حفظ حاشیه امنیت پایداری ولتاژ شبکه به صورت بهینه، ارائه شده است. شبکه مورد مطالعه شبکه انتقال جنوب شرق ایران بوده و در طی یک برنامه ریزی ده ساله به تدریج ضریب نفوذ منابع بادی در آن تا میزان قابل توجهی افزایش می یابد. لازم به ذکر است که این بخش از شبکه انتقال ایران از ضعف ذاتی پایداری ولتاژ رنج می برد، و لذا درنظرگرفتن ملاحظات پایداری ولتاژ ضروری می نماید. شبکه مورد نظر در محیط نرم افزار MATPOWER مدل شده است و نتایج به دست آمده توسط روش بهینه سازی اجتماع ذرات (PSO) ، نشان از کارآمدی روش پیشنهادی دارد.کلید واژگان: انرژی بادی, حاشیه پایداری ولتاژ, هزینه تراز شده انرژی, روش سناریو بنیان, مدیریت پروژه و PSORecently, the penetration of intermittent power sources has increased in power systems due to the international drive for clean and sustainable energy sources; but these alternative energies could encounter the power systems with some problems which should be planned and prevented. In this paper, based on project management consideration, a novel scenario-basis multi-objective planning method for large wind farm development plans is proposed in order to optimally minimize the wind farms’ Levelized Cost of Energy (LCOE) and total cost of power flow while maintaining the desired security margin of the grid in any state of operation. The studies are conducted on actual power system of Iran’s southeast grid using MATPOWER software and the obtained results show the effectiveness of the proposed method.Keywords: Wind energy, voltage stability margin (VSM), levelized cost of energy (LCOE), scenario based method, project management, Particle swarm optimization (PSO)
-
Interline power flow controller (IPFC) is a concept of AC flexible control of the transmission system (FACTS), with the ability to series compensation and power flow management in multi lines of a post power. Out of all FACTS devices interline power flow converter (IPFC) is considered to be most flexible, powerful and versatile. IPFC has the capability of compensating multi-transmission line. The proper placement of interline power flow controller (IPFC) can improve the transmission line congestion problem to a great extent. This paper proposed, the optimal location of the IPFC in electrical power systems, using the particle swarm optimization algorithm. Expression of sample figure and analysis of the sample system shows that IPFC is effective to minimize the power losses in the power system.Keywords: Interline power flow Controller (IPFC), Particle swarm optimization (PSO), transmission lines, power system
-
خودروهای برقی قابل اتصال به شبکه در کنار مسئله کاهش آلودگی، دارای قابلیت هایی برای کمک رسانی به سیستم های قدرت می باشند. یکی از مهم ترین این قابلیت ها پاسخگویی به نیاز شبکه جهت تولید توان های اکتیو و راکتیو است. در این مقاله با توجه به قیود شبکه، ملاحظات فنی و قیمت های پیشنهادی بازار، یک چارچوب نظری جهت اختصاص ظرفیت این خودروها ارائه شده است. بدین منظور تابع هدفی با رویکرد حداقل سازی هزینه های پرداختی توسط بهره بردار مستقل شبکه توزیع یا DSO به تولید کنندگان هر یک از توان های اکتیو و راکتیو پیشنهاد شده است. با توجه به این که مساله مورد نظر در قالب یک مساله بهینه سازی است، برای حل آن نیز از الگوریتم بهینه سازی اجتماع ذرات استفاده شده است. همچنین به منظور تسریع در فرایند بهینه سازی و جلوگیری از گیرافتادن الگوریتم در بهینه های محلی، راهکارهای ابتکاری جدیدی به الگوریتم اضافه شده است. در این قالب پیشنهادی، خودروها برای تولید توان های اکتیو و راکتیو با ژنراتور رقابت می کنند. کارایی روش پیشنهادی بر روی یک فیدر شبکه ولتاژ پایین با 134 مشترک و با حضور منابع تولید توان های اکتیو و راکتیو مورد ارزیابی قرار گرفته و میزان تولید و هزینه های پرداختی برای هر یک از تولیدکنندگان تعیین شده است.کلید واژگان: الگوریتم بهینه سازی اجتماع ذرات, جبران سازی توان راکتیو, خودروهای برقی قابل اتصال به شبکهPlug in electric vehicles besides environment pollution reduction can help power system operation. One of the most important capabilities of them is providing activeand reactive power. This paper considers grid constraints, technical concerns and market price and proposes a framework to allocate the PEV capacity such that operational cost paid by distribution system operator (DSO) to power provider of active and reactive power is minimized. For this purpose, an objective function is defined that includes the payment for each power provider. This objective function is minimized based on particle swarm optimization subject to grid and vehicles constraints. In this framework, the PEVs compete with generator to produce active and reactive power. In order to accelerate the optimization process and prevent the algorithm from being trapped in local optima, new heuristic approaches are included to the original PSO algorithm. To evaluate the effectiveness of the propose method, it is implemented on the low voltage with 134 customer and including the other power providers and the amount of each participants production and payment cost to each component is determined.Keywords: Particle swarm optimization (PSO), reactive power compensation, plug-in electric vehicle
-
Castellated beams and composite action of beams are widely applicable methods to increase the capacity of the beams. Semi-rigid connections can also redistribute internal moments in order to attain a better distribution. Combination of these methods helps to optimize the cost of the beam. In this study, some meta-heuristic algorithms consisting of the particle swarm optimization, colliding bodies optimization, and enhanced colliding bodies optimization are used for optimization of semi-rigid jointed composite castellated beams. Profile section, cutting depth, cutting angle, holes spacing, number of filled end holes of the castellated beams and rigidity of connection are considered as the optimization variables. Constraints include the construction, moment, shear, deflection and vibration limitations. Effect of partial fixity and commercial cutting shape of a castellated beam for a practical range of beam spans and loading types are studied through three numerical examples. The efficiency of three meta-heuristic algorithms is compared.Keywords: Structural optimization, semi, rigid connections, end filled castellated beams, composite beams, colliding bodies optimization (CBO), enhanced colliding bodies optimization (ECBO), particle swarm optimization (PSO)
-
Nowadays, using distributed generation (DG) resources, such as wind and solar, also improving the voltage profile in distribution companies has been considered. As optimal placement and sizing of shunt capacitors become more prevalent, utilities want to determine the impact of the various capacitors placement in distribution systems. Locating and determining the optimal capacity of shunt capacitors in order to reduce power losses and improving the voltage profile and using the maximum capacity of transmission lines, are one of the common problems in the design and control of power systems. Using the shunt capacitors, not only improve voltage profiles, but also reduce system losses. In this study, a genetic algorithm (GA) and particle swarm optimization (PSO) algorithm are proposed for simultaneous placement of capacitors and DG resources in order to reduce power losses and improve the voltage profile in a case study radial distribution network. Simulations applied on IEEE 70-bus and 86-bus test system, and finally solutions of the proposed algorithms are compared.Keywords: Particle Swarm Optimization (PSO), Capacitor placement, Radial distribution network, Power loss reduction, DG placement
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.