به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "two-stage stochastic programming" در نشریات گروه "صنایع"

تکرار جستجوی کلیدواژه «two-stage stochastic programming» در نشریات گروه «فنی و مهندسی»
  • علیرضا روشنی، محمدرضا غلامیان*، مهسا عربی
    هدف

    با توجه به افزایش پیچیدگی‏ های ناشی از عدم‏ قطعیت و تاثیرات آن در شبکه ‏های زنجیره تامین، بسیاری از محققین به استفاده از رویکردهای تقابلی با عدم ‏قطعیت داده ‏ها روی آورده ‏اند. به علاوه، وقوع هرگونه اختلال در شبکه ‏های توزیع، می تواند خسارت ‏های جبران‏ ناپذیری به بار بیاورد؛ بنابراین اتخاذ استراتژی‏ های مناسب برای بالا بردن سطح تاب‏ آوری شبکه زنجیره تامین به دنبال کاهش آثار مخرب ناشی از هرگونه اختلال امری مهم و ضروری به نظر می‏ رسد.

    روش شناسی پژوهش: 

    در این مقاله، یک مدل ریاضی چندهدفه، چند دوره ‏ای و سناریو محور ارایه شده است که در آن علاوه بر کمینه‏ سازی دو هدف زمان تحویل و هزینه، به منظور افزایش تاب‏ آوری شبکه، معیارهای منفی تاب ‏آوری نیز کمینه می ‏گردند. برای غلبه بر ماهیت غیرقطعی داده ‏ها نیز از رویکرد برنامه ‏ریزی تصادفی دو مرحله ‏ای استفاده شده است. همچنین برای تبدیل مدل، به یک مدل تک‏ هدفه، از برنامه ‏ریزی آرمانی بهره گرفته شده است.

    یافته ها

    به منظور اثبات کاربردی بودن مدل، داده‏ های واقعی یک مطالعه موردی در مشهد پیاده ‏سازی شده است. در نهایت، بر اساس اعتبارسنجی و تحلیل حساسیت صورت گرفته، مدل غیرقطعی پیشنهادی از برتری مشهودی نسبت به مدل قطعی برخوردار است.

    اصالت/ارزش افزوده علمی:

     این مقاله یک مدل ریاضی خطی چندهدفه را برای طراحی شبکه زنجیره تامین دارو تحت شرایط کووید-19 ارایه می کند که در آن دو شاخص زمان و تاب‏ آوری به عنوان ابزارهای بهینه ‏سازی به طور همزمان در نظر گرفته شده‏ اند.

    کلید واژگان: برنامه ‏ریزی تصادفی دو مرحله ‏ای, تاب ‏آوری, زنجیره تامین دارو, طراحی شبکه زنجیره تامین, کووید-19
    Alireza Roshani, MohammadReza Gholamian *, Mahsa Arabi
    Purpose

    Due to the increasing complexity of uncertainty and its impact on the supply chain network, many researchers have resorted to coping approaches with data uncertainty. In addition, the occurrence of any disruption in the supply chain networks can cause irreparable damage. Therefore, adopting appropriate strategies to increase the level of the supply chain network resilience toward any disruptive events seem to be necessary.

    Methodology

    In this paper, a multi-objective, multi-period, and scenario-based mathematical model is presented in which objective functions of delivery time and total network cost are minimized, and to increase network resilience, non-resilience measures are also minimized. Furthermore, a Two-Stage Stochastic Programming (TSSP) approach has been utilized to overcome the uncertain nature of the input parameters. Goal programming has also been used to transform the model into a single-objective one.

    Findings

    In order to prove the model's applicability, the real-world data of a case study of Mashhad has been implemented. Eventually, according to the validation and sensitivity analysis results, the proposed uncertain model has clear superiority over the deterministic model.

    Originality/Value: 

    This paper presents a multi-objective linear mathematical model for designing the Pharmaceutical Supply Chain (PSC) network under the COVID-19 situation. Two indicators of time and resilience as optimization tools have been considered simultaneously.

    Keywords: Supply chain network design, Two-stage stochastic programming, Supply Chain Resilience, Pharmaceutical supply chain, COVID-19
  • الهام غلامیان نقنه، سید محمدرضا داودی، محمدرضا شریفی قزوینی

    تخصیص مکان در طراحی یک زنجیره تامین به دلیل هزینه بری بالا، عدم امکان تغییر و دامنه تاثیر آن بر سایر تصمیم ها و فعالیت ها، یک تصمیم سطح استراتژیک می باشد و انتخاب تامین کنندگان و سیاست های تولید و حمل ونقل در سطح تاکتیکی جای می گیرد. ادغام سطوح مختلف تصمیمات در زنجیره تامین به کاهش هزینه های کلی و بهبود عملکرد آن کمک می کند. برای این منظور در پژوهش حاضر یک مدل تصادفی دومرحله ای میانگین- ارزش در معرض ریسک شرطی برای تخصیص مکان و محاسبه جریان مواد و کالاهای ساخته شده یک زنجیره تامین چندمحصولی-چندسطحی مورداستفاده قرار می گیرد. در این مدل، توزیع کنندگان و تامین کنندگان با امکان اختلال مواجه هستند و برای جلوگیری از اختلال در تامین کنندگان می توان آن ها را با صرف هزینه، مورد تجهیز قرار داد. منابع عدم قطعیت در مدل شامل هزینه های حمل ونقل، تقاضای مشتریان نهایی و احتمال اختلال در مراکز توزیع و تامین کنندگان می باشد. مدل پژوهش از ارزش در معرض ریسک شرطی به همراه ضریب ریسک گریزی برای کنترل ریسک ناشی از فاصله گرفتن زیاد از مقادیر مورد انتظار استفاده می کند. مدل طراحی شده در نهایت به کمک شبیه سازی مونت کارلو به یک برنامه ریزی خطی تک سطح تبدیل می گردد. در پایان ضمن یک مثال عددی، به پیاده سازی مدل و تحلیل حساسیت آن اقدام می گردد.

    کلید واژگان: زنجیره تامین, برنامه ریزی تصادفی دوسطحی, ارزش در معرض ریسک شرطی, امکان اختلال
    Elham Gholamian Naghne, S. M .R. Davoodi, MohammadReza Sharifi Qazvini

    Location-allocation in a supply chain is a strategic level decision due to high cost, impossibility of change and the scope of its impact on other decisions and activities, and the selection of suppliers and production and transportation policies is at a tactical level. Integrating different levels of supply chain decisions helps overall costs reduction and performance improvement. To this end, in this paper, a two-stage mean-conditional value at risk model is used to allocate locations and calculate the flow of materials and manufactured products of a multi-product-multi-level supply chain. In this model, distributors and suppliers face the possibility of disruption, and to prevent disruption on the side of suppliers, they can be equipped by spending additional costs. Sources of uncertainty in the model include shipping costs, end-user demand, and the possibility of disruption to distribution centers and suppliers. The research model uses the conditional value at risk along with the risk aversion factor to control the risk of long distances. The designed model is eventually transformed into a single-level linear programming with the help of Monte Carlo simulation. At the end, while solving a numerical example, the model is implemented and the related sensitivity analysis is presented.</em>

    Keywords: Supply Chain, Two Stage Stochastic Programming, CVaR, Disruption Possibility
  • Alireza Homayounmehr, Taha-Hossein Hejazi *
    The management and design of supply chain networks in various dimensions are so critical today that managers' decisions significantly impact the configuration and flow of material in the network. Above all, supply chain management intends to reduce costs. The inability to accurately predict certain features, such as demand, can complicate the cost estimation process. To that end, an essential parameter is the reliability of supply chain networks. Considering the reliability of the supply chain network brings the model closer to reality, and the wellness or failure of its elements under different scenarios increases the enthusiasm to face unpredictable events in managers and helps network performance. Furthermore, appropriate management and design of the supply chain network can increase customer satisfaction and reduce costs in the long term. In this research, a four-tier supply chain network was designed to reduce the costs through a two-stage stochastic programming attitude. The combined metaheuristic method (genetic and simulated annealing algorithms) was used to solve the model. By treating the reliability of entities and routes and its effect on reducing cost as an essential criterion in the mentioned problem, it was showed that a reliable system has lower costs than an unreliable system.
    Keywords: network design, multi-period supply chain, Reliability, Two-stage stochastic programming
  • Mehdi Biuki, Abolfazl Kazemi *, Alireza Alinezhad
    The present scenario of supply chain management is full of uncertainty due to the intrinsic complexity of operating environments. A perishable products supply chain is not an exception and is often vulnerable to disruptive incidents throughout all stages from upstream to downstream. To deal with such a challenge, a resilient structure of the supply chain with the capability to recover from or react to disruptions is approached in this study. To secure the supply chain operations, we investigate a set of proactive strategies, including signing contracts with backup suppliers, reserving extra capacity in production facilities, lateral transshipment, and keeping inventory. Using a two-stage stochastic programming model, this study examines the extent to which supply chain responsiveness and resilience are supportive. The proposed model is validated through a numerical example, and managerial insights are derived. The computational results are based on three analyses: (1) extracting the relationship between the cost function and the acceptable service levels, (2) examining the effectiveness of different strategies in managing disruptions, (3) and evaluating the accuracy of the two-stage stochastic programming approach in comparison with other approaches.
    Keywords: Supply chain management, perishable products, Resilience, responsiveness, Two-stage stochastic programming
  • Fatemeh Bayatloo, Bozorgi, Amiri Ali*
    Development of every society is incumbent upon energy sector’s technological and economic effectiveness. The electricity industry is a growing and needs to have a better performance to effectively cover the demand. The industry requires a balance between cost and efficiency through careful design and planning. In this paper, a two-stage stochastic programming model is presented for the design of electricity supply chain networks. The proposed network consists of power stations, transmission lines, substations, and demand points. While minimizing costs and maximizing effectiveness of the grid, this paper seeks to determine time and location of establishing new facilities as well as capacity planning for facilities. We use chance constraint method to satisfy the uncertain demand with high probability. The proposed model is validated by a case study on Southern Khorasan Province’s power grid network, the computational results show that the reliability rate is a crucial factor which greatly effects costs and demand coverage.
    Keywords: Electricity supply chain, capacity planning, location, two stage stochastic programming, chance constraint programming
  • سجاد گل محمدی، مسعود ماهوتچی *
    در دهه های اخیر، بحران های طبیعی به دلیل عواملی نظیر رشد جمعیت، تغییرات شرایط جوی و یکپارچگی سامانه ها، رشد چشمگیری داشته اند و هر سال نیز میلیون ها انسان به دلیل بحران های طبیعی یا انسانی آسیب می بینند؛ بنابراین، به مدلی یکپارچه نیاز است تا تمام فرایند پیش و پس از بحران را به طور همزمان درنظر بگیرد. در این پژوهش، یک مدل یکپارچه تصادفی پیشنهاد شده است که در آن دو دسته تصمیمات درنظر گرفته می شود؛ تصمیمات مرحله اول شامل انتخاب محل احداث انبارهای منطقه ای از بین نقاط کاندید و میزان پیش موجودی ذخیره شده در آن ها و تصمیمات مرحله دوم شامل طراحی شبکه توزیع اقلام امدادی و تعیین جریان کالایی درون آن. تابع هدف این مدل کمینه سازی هزینه های زنجیره امدادرسانی است. درنهایت، به منظور بررسی کارایی مدل از یک مطالعه موردی با داده های واقعی از سناریوهای زلزله در تهران بزرگ و خسارات ناشی از آن ها استفاده می شود.
    کلید واژگان: برنامه ریزی تصادفی دومرحله ای, زنجیره تامین امداد, طراحی شبکه توزیع, مدیریت بحران, مکان یابی تسهیلات
    Sajjad Golmohammadi, Masoud Mahootchi *
    In recent decades, there is a remarkable increase in natural disasters because of population growth, climate change, and systems integrations, which have led to many causalities (death and injuries) around the world. Therefore, an integrated mathematical model is needed to simultaneously deal with all different issues before and after natural disasters. In this paper, we develop an integrated stochastic model for relief operations supply chain, which has two decisions types. First stage decisions include locating regional warehouses and determine pre-position amount of commodities in each warehouse. Second stage decision includes emergency network design, and determines each commodity flow in the network. The objective function is to minimum the total cost of the relief supply chain. Finally, in order to validate the model efficiency, a case-study of Tehran earthquake scenarios with real data of casualties is analyzed.
    Keywords: Crisis Management, Distribution network design, Emergency supply chain, Facility location, Two-stage stochastic programming
  • Ali Ghavamifar, Fatemeh Sabouhi, Ahmad Makui *
    Due to occurrence of unexpected disruptions,a resilient supply chain design is important. In this paper, a bi-objective model is proposed for designing a resilient supply chain including suppliers, distribution centers (DCs), and retailers under disruption risks.The first objective function minimizes total costs. The second objective function maximizes satisfied demands. We use the augmented e-constraint method to solve the bi-objective problem. In the proposed model, the possibility of partial disruptions of DCs as well as complete disruptions of connection links between distribution centers and retailers is considered. In order to reduce risk, resilience strategies including, using multiple sourcing, direct shipment of products from suppliers to retailers, and lateral transshipment between distribution centers are used.We utilize a two-stage stochastic programming method to deal with disruption risks. The decisions of the first stage of the method consist selection of suppliers and location of DCs while the decisions of the second stage include integrated programs for supply and distribution of products. The validity of the proposed model is then evaluated by introducing a numerical example and performing different sensitivity analyses on it.
    Keywords: resilient supply chain, Supplier selection, Two-stage stochastic programming, Lateral transshipment, multiple sourcing
  • Mohsen Yahyaei, Mahdi Bashiri *

    The hub location problem arises in a variety of domains such as transportation and telecommunication systems. In many real-world situations, hub facilities are subject to disruption. This paper deals with the multiple allocation hub location problem in the presence of facilities failure. To model the problem, a two-stage stochastic formulation is developed. In the proposed model, the number of scenarios grows exponentially with the number of facilities. To alleviate this issue, two approaches are applied simultaneously. The first approach is to apply sample average approximation to approximate the two stochastic problem via sampling. Then, by applying the multiple cuts Benders decomposition approach, computational performance is enhanced. Numerical studies show the effective performance of the SAA in terms of optimality gap for small problem instances with numerous scenarios. Moreover, performance of multi-cut Benders decomposition is assessed through comparison with the classic version and the computational results reveal the superiority of the multi-cut approach regarding the computational time and number of iterations.

    Keywords: Reliable hub location problem, Two-stage stochastic programming, Sample average approximation, Multiple cuts Benders decomposition
  • Aliakbar Hasani *
    In this paper, a comprehensive mathematical model for designing an electric power supply chain network via considering preventive maintenance under risk of network failures is proposed. The risk of capacity disruption of the distribution network is handled via using a two-stage stochastic programming as a framework for modeling the optimization problem. An applied method of planning for the network design and power generation and transmission system via considering failures scenarios, as well as network preventive maintenance schedule, is presented. The aim of the proposed model is to minimize the expected total cost consisting of power plants set-up, power generation and the maintenance activities. The proposed mathematical model is solved by an efficient new accelerated Benders decomposition algorithm. The proposed accelerated Benders decomposition algorithm uses an efficient acceleration mechanism based on the priority method which uses a heuristic algorithm to efficiently cope with computational complexities. A large number of considered scenarios are reduced via using a k-means clustering algorithm to decrease the computational effort for solving the proposed two-stage stochastic programming model. The efficiencies of the proposed model and solution algorithm are examined using data from the Tehran Regional Electric Company. The obtained results indicate that solutions of the stochastic programming are more robust than the obtained solutions provided by a deterministic model.
    Keywords: Power supply network, Two-stage stochastic programming, Preventive maintenance, Accelerated benders decomposition, K-means clustering
  • احمد رضایی، فرزاد دهقانیان*
    مکانیسم تجارت مجوزهای نشر آلودگی یکی از مکانیسم های ذیل پیمان کیوتو3 برای کنترل میزان انتشار آلاینده های زیست محیطی است. این مقاله به دنبال طراحی استراتژیک یک شبکه زنجیره تامین در محیط تجارت مجوزهای نشر آلودگی با در نظر گرفتن پارامترهای غیرقطعی و محدودیت بودجه است. تقاضا و قیمت مجوز های نشر آلودگی به عنوان عوامل تصادفی مهم تاثیرگذار در طراحی شبکه لحاظ شده اند. بدین منظور ابتدا یک مدل برنامه ریزی تصادفی دو مرحله ای ارائه و حل شده است. سپس تاثیر تغییرات قیمت مجوزهای نشر آلودگی و تاثیر تغییرات بودجه بر طراحی شبکه بررسی و ارزش جواب های تصادفی محاسبه می شوند. نتایج نشان دهنده اثرگذاری تجارت مجوزهای نشر و تغییر در توپولوژی شبکه و کاهش هزینه ها، به دلیل استفاده از برنامه ریزی تصادفی است.
    کلید واژگان: طراحی شبکه زنجیره تامین, زنجیره تامین سبز, تجارت مجوزهای نشر آلودگی, برنامه ریزی تصادفی دو مرحله ای
    Ahmad Rezaee, Farzad Dehghanian*
    Emission trading is one of the famous mechanisms under Kyoto protocol to control environmental pollution. The aim of this paper is to design a strategic supply chain network under emission trading scheme with inclusion of stochastic parameters and budget limitation. Demand and price of carbon credits are considered as the important stochastic parameters influencing the supply chain network. In doing so, a two-stage stochastic programming model has been presented and solved. Furthermore the effect of change of carbon credit price and budget have been studied and the value of stochastic solution have been calculated. The results show that the inclusion of carbon price affects the supply chain network configuration and use of stochastic programming results in total cost reduction.
    Keywords: Supply Chain Network Design, Green Supply Chain, Emission Trading, Two Stage Stochastic Programming
نمایش نتایج بیشتر...
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال