به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "flow pattern" در نشریات گروه "عمران"

تکرار جستجوی کلیدواژه «flow pattern» در نشریات گروه «فنی و مهندسی»
  • پری ملکی، جواد احدیان*، سید محمود کاشفی پور، منوچهر فتحی مقدم، انتون اشلایز

    یکی از روش های نوین حفاظت از قوس رودخانه ها استفاده از سازه هوادهی (Air bubble screen) است. در این مقاله به مطالعه تاثیر سازه هوادهی بر الگوی جریان و قدرت جریان ثانویه و تنش برشی بستر در یک قوس ملایم 90 درجه همراه با سازه هوادهی پرداخته شده است. در انجام این آزمایش ها برای اندازه گیری سرعت از دستگاه سرعت سنج الکترومغناطیس سه بعدی استفاده شده است. مقایسه بین کانتورهای (Countors) سرعت طولی در طول قوس انجام شده و مقادیر قدرت جریان ثانویه و الگوی آن و همچنین تنش برشی بستر موردبررسی قرار گرفت. نتایج بیانگر آن است که در حضور سازه هوادهی الگوی توزیع سرعت و تنش برشی اصلاح شده و مکان بیشینه سرعت و تنش برشی از قوس بیرونی دور شده و به میانه کانال منتقل می شود. الگوی جریان ثانویه نشان دهنده وجود یک سلول جریان ثانویه در خلاف جهت سلول ناشی از انحنا است و همچنین قدرت جریان ثانویه نیز کاهش یافت. با توجه به نتایج ارایه شده انتظار می رود مکان وقوع بیشینه آب شستگی که منطبق بر مکان بیشینه سرعت و تنش برشی است از قوس بیرونی دور شده و به میانه فلوم منتقل شود.

    کلید واژگان: سرعت سنج سه بعدی, قدرت جریان ثانویه, الگوی جریان, تنش برشی بستر, سازه هوادهی
    Pari Maleki, Javad Ahadiyan *, Seyed Mahmood Kashefipour, Manoochehr Fathi Moghadam, Anton Schleiss

    The complex interactions between streameise flow and curvature- induced secondary flow in bends, bed morphology cause erosion near the outer bank, and deposition near the inner bank, that it can endanger the outer bank’s stability and also reduce the navigable width of the rivers. There are several techniques to protect the outer bank, reduce adverse impacts and control bed erosion in bends. Methods used in most parts of the world include submerged groynes, spur dikes, and bandal-like structures. But, meny these Methods have the disadvantage of being fixed constructions on the bed river that caused a threat for navigation. This paper describes a new way that consists in changes the bed morphology with provoking changes in the flow pattern. Dugue, et al. (2011, 2012) studied morph dynamic bends rivers with the Air-bubble screen method. Their results reveal that the air bubble screen is able to modify the flow pattern by shifting the maximum scouring from the outer bank towards the center of the flume and does not endanger its stability anymore. Dugue et al, 2013 studied scour reduction at a 193° bend by an air-bubble screen method. Velocity pattern at 70° bend showed that the bubble-induced flow pattern overcame the secondary flow induced by the outer bank while decreasing the morphology slope. It also showed 50 percent reduction in the maximum scour depth. Shukry (1949) is one of the first researchers in the study of erosion of the outer bank of rivers in a canal with a 180- degree bend with various proportions of the rivers radius to its width. There have been very few investigations about air bubble screen in 90 bend, therefor  in this study the effect of the air bubble screen on flow pattern and Secondary flow strength  and bed shear stress in 90 degree bend under Froude numbers 0.45 is examine.

    Keywords: 3-D velocimeter, Secondary flow strength, Flow pattern, Bed shear stress, Air bubble screen
  • مهدی اسدی، امیر محجوب*، فواد کیلانه ئی
    در هنگام ساخت پل بر روی مقطع رودخانه، برای کاهش طول سازه ی عرشه پل بدلایل اقتصادی و اجرایی، معمولا قسمتی از سیلاب دشت رودخانه در دو طرف با خاکریز های دسترسی مسدود می گردد. این امر موجب تنگ شدگی در مسیر رودخانه و تغییر در شرایط هیدورلیکی جریان می گردد. با زیاد شدن گرادیان سرعت در مقطع تنگ شده، تنش برشی وارد بر بستر رودخانه نیز افزایش می یابد. افزایش تنش برشی می تواند باعث فرسایش در بستر رودخانه و در محل پایه ها و کوله ها شود و پل را در معرض آسیب های هیدرولیکی قرار دهد. از طرف دیگر، گاهی اوقات راستای محور پل، عمود بر راستای جریان نیست و اصطلاحا پل، زاویه بیه دارد. در این پل ها، خاکریزهای دسترسی را با توجه به محل قرارگیری آنها در مسیر جریان آب و نحوه عملکردشان، می توان خاکریز هدایت کننده و شکافنده جریان نامید. در این مقاله به بررسی تاثیر پیشروی متقارن و نامتقارن خاکریزهای دسترسی پل بیه دار در سیلاب دشت بر هیدرولیک جریان پرداخته شده است. برای بهتر شدن شرایط هیدرولیکی عبور جریان از محل خاکریز شکافنده، پیشروی نامتقارن خاکریزهای دسترسی پیشنهاد و بررسی شده است. بدین منظور مدل سازی سه بعدی جریان در دستور کار قرار گرفت. در ابتدا، مدل عددی بر اساس مطالعات تجربی قبلی صحت سنجی شد. سپس، اثرات پیشروی متقارن خاکریز های دسترسی در زوایای مختلف بیه پل، ارزیابی شد و در ادامه پیشروی نامتقارن خاکریز های دسترسی جهت کاهش تنش برشی در مقطع رودخانه پیشنهاد و بررسی شدند. نتایج نشان می دهد که پیشروی 70 درصدی خاکریز هدایت کننده جریان در زاویه بیه بحرانی، با توجه به ثابت بودن مقطع عبوری جریان، باعث کاهش حداکثر سرعت و تنش برشی به ترتیب به مقدار 14 و 35 درصد در مقطع رودخانه ی مورد مطالعه می شود.
    کلید واژگان: آب شستگی, بیه پل, خاکریز دسترسی, مدل سازی عددی, هیدرولیک جریان
    Mahdi Asadi, Amir Mahjoob *, Foad Kilanehei
    When building a bridge over a river section, to reduce the length of the bridge deck structure for economic and operational reasons, usually part of the river floodplain is blocked on both sides by access embankments. This causes narrowing of the river and changes in the hydraulic conditions. As the velocity gradient increases in the narrowed section, the shear stress on the riverbed also increases. Increased shear stress can cause erosion in the riverbed and at the base of foundations and backpacks, exposing the bridge to hydraulic damage. On the other hand, sometimes the direction of the axis of the bridge is not perpendicular to the direction of the flow, and the so-called bridge has an angle of inclination. In these bridges, access embankments can be called flow-guiding and embankment embankments according to their location in the water flow path and how they operate. In this paper, the effect of symmetric and asymmetric progress of Bihadar bridge access embankments in floodplain on hydraulic flow is investigated. To improve the hydraulic conditions of the flow through the rift embankment, the asymmetric advance of the access embankments has been proposed and investigated. For this purpose, three-dimensional flow modeling was put on the agenda. Initially, the numerical model was validated based on previous experimental studies. Then, the effects of symmetrical advancement of access embankments at different angles of the bridge were evaluated and then the asymmetric progression of access embankments to reduce shear stress in the river section was proposed and investigated. The results show that the 70% advance of the flow-conducting embankment at the critical peak angle, due to the constant flow cross section, reduces the maximum velocity and shear stress by 14 and 35% in the studied river section, respectively.
    Keywords: Approach embankment, Flow Pattern, numerical simulation, Scour, Skewed Bridge
  • مهشید گودرزی*، مجید فضلی

    وجود موانع در مسیر جریان سبب تغییراتی در هیدرولیک و پارامترهای هیدرودینامیکی جریان می گردد. از جمله این پارامترهای هیدرودینامیکی جریان، می توان به انرژی جنبشی آشفتگی و شدت آشفتگی جریان اشاره نمود. از آنجا که آشفتگی مرتبط با استهلاک انرژی جریان می باشد، لذا بررسی این پدیده همواره حایز اهمیت بوده است. احداث موانع در مسیر سیال، به خصوص هنگامی که این موانع در محل عبور رودخانه ساخته می شوند، یکی از مهم ترین مسایل مهندسی رودخانه است. از نتایج مطالعه ی رفتار سیال پیرامون موانع متخلخل، می توان در طراحی آبشکن های متخلخل توری سنگی، همچنین ساخت موانع متخلخل توری سنگی در مسیر جریان، جهت استهلاک انرژی جریان و... استفاده کرد. در این پژوهش به بررسی آزمایشگاهی ساختار جریان پیرامون آبشکن های متخلخل در کناره کانال و موانع متخلخل در وسط کانال مستقیم با بستر ثابت پرداخته شده است. در اندازه گیری سرعت های سه بعدی از دستگاه سرعت سنج نقطه ای ADV استفاده شده است. نتایج نشان داد، مولفه های سه بعدی سرعت در آبشکن ها و موانع با افزایش درصد تخلخل، کاهش می یابد. همچنین جدایش جریان ، جریان های بازگشتی، جریان انحرافی و همچنین، جریان پایین رونده، در حالتی که مانع در وسط کانال قرار دارد نسبت به حالتی که آبشکن در کناره ی دیواره کانال قرار دارد شدیدتر است. همچنین تاثیر درصد تخلخل در موانع نسبت به آبشکن ها خیلی بیشتر و واضح تر است. و شدت آشفتگی و وسعت محدوده دارای بیشینه شدت آشفتگی در موانع وسط کانال نسبت به آبشکن های کناره دیواره شدیدتر است. در نهایت،روند کاهش شدت آشفتگی در تخلخل های بیشتر، کندتر است.

    کلید واژگان: آبشکن توری سنگی, موانع توری سنگی, الگوی جریان, درصد تخلخل, سرغت سنج ADV, شدت آشفتگی, انرژی جنبشی آشفتگی
    Mahshid Goudarzi*, Majid Fazli

    Hydrodynamically, there is a complex confrontation among the porous obstacles along the flow path and the fluid is significantly important Existence of obstacles in the flow path causes changes in hydraulics and hydrodynamic parameters of the flow. Among the hydrodynamic parameters that change due to the presence of obstacles in the flow path, we can mention the intensity of flow turbulence. Since turbulence is related to the energy dissipation of flow, it has always been important to study this phenomenon.one of the most important issues of river engineering is The construction of obstacles in the fluid path, especially when these obstacles are built at the river crossing. The results of studying the behavior of fluid around porous obstacles can be used in the design of gabion groins, as well as the construction of gabion obstacles in the flow path, to dissipate flow energy .In this study, the flow structure around porous groins on the side of the canal and porous obstacles in the middle of a straight channel with a fixed bed has been investigated in a laboratory. The ADV  was used to measure three-dimensional velocities and reynolds stresses around the gabion obstacles with different porosity on the side and middle of the channel The obstacles on the side of the canal act as groins and the obstacles in the middle of the canal act as obstacle consuming the energy of the stream. The velocity was measured at 1265 points for groins and it was measured at 1525  points for obstacles located in the middle of the channel .The results showed that the three-dimensional velocity components  decrease with increasing porosity in groins and obstacles. Also, the separation of flow, return flow, ..., is more severe when the obstacles is in the middle of the channel than when the groin is on the side of the channel wall.Also, the effect of porosity percentage on obstacles is much greater and clearer than on groins.And the intensity of turbulence and the extent of the area have the maximum intensity of turbulence in the obstacles in the middle of the canal is more severe than the groins in the side wall. The maximum amount of kinetic energy for obstacles is somewhat larger than for similar groins. However, the maximum turbulence intensity for the obstacles with porosity percentages of 0, 20, 40 and 60 is about 2.95, 2.4, 1.9 and 1.6 times the maximum turbulence intensity in the same groin, which is relatively large. Therefore, it can be understood that the presence of a obstacles in the middle of the channel, although it does not cause much change in flow energy, but the presence of obstacles in the middle causes the current energy dissipation up to about 2 times the current energy dissipation behind the groin.and, the process of reducing the intensity of turbulence is slower at higher porosities. Finally, The width of the zone with more turbulence intensity in the cross section for the obstacles with porosity of 0, 20, 40 and 60% is about 2.3, 2.1, 2 and 1.9 times the range in the same groin, respectively. Which in itself indicates a greater depreciation of the flow behind the obstacle.

    Keywords: gabion groin, gabion obstacle, flow pattern, porosity percentage, veloci, ADV velocimeter, Intensity of turbulence, Kinetic energy of turbulence
  • چنور عبدی چوپلو*، محمد واقفی، یاسر صفرپور

    در این تحقیق از مدل عددی  SSIIMبرای بررسی الگوی جریان، کانتورهایی سرعت، قدرت جریان و پارامترهای آشفتگی در اطراف پایه  پل عمودی با حضور صفحات مستغرق با طول هم پوشانی مختلف، و قرارگیری صفحات مستغرق از پایه ی پل و از یکدیگر در شش فاصله مختلف، در قوس 180 درجه تند استفاده گردید و مقایسه نتایج تحلیل عددی و آزمایشگاهی انجام شد. تطابق داده های عددی و آزمایشگاهی بیانگر عملکرد مناسب مدل عددی SSIIM  در مدل سازی الگوی جریان در مسئله مورد بررسی می باشد. نتایج تحقیق نشان داد که محدوده ی قدرت جریان ثانویه، در تمامی مدل های با حضور صفحات مستغرق از 5/10 تا 12 درصد اندازه گیری شد. در حالتی که صفحات مستغرق هم پوشانی با هم نداشتند و استقرار صفحات مستغرق در فاصله ی 5/2 برابر قطر پایه از پایه و فاصله معادل 2 برابر قطر پایه از همدیگر و در بالادست پایه بوده کمترین مقدار و در حالت هم پوشانی 100 درصد صفحات، در آرایش استقرار صفحات مستغرق در فاصله 5 برابر قطر پایه از آن و فاصله 2 برابر قطر پایه از همدیگر و در بالادست پایه بیشترین مقدار خود را داشته است. همچنین تغییرات تنش برشی بعد از ایجاد آبشستگی موضعی محاسبه شد. تنش برشی ماکزیمم از ابتدای قوس تا نزدیکی خروجی قوس به سمت جداره داخلی قوس متمایل بود و در محدوده خروجی قوس تنش برشی ماکزیمم به سمت میانه قوس و سپس نیمه ی دوم قوس منتقل گردید.

    کلید واژگان: پایه ی پل, صفحات مستغرق, الگوی جریان, قوس 180 درجه تند, مدل عددی SSIIM
    Chonoor Abdichooplou*, Mohammad Vaghefi, Yaser Safarpoor

    In this research, the SSIIM numerical model is investigated to investigate the flow pattern, velocity meters, current strength and turbulence parameters around the pier of the vertical bridge with submerged vanes. The parameters of different overlap length, and the distance of the submerged vanes upstream from the pier of the bridge and from each other in sharp 180-degree bend in the steep-ratio hydraulic radius 2 with a height of 90 cm and a width of 100 cm and a length of straight direction upstream and downstream of the bend respectively 6.5 m and 5 m, were analyzed. SSIIM software was used to investigate the flow field around the around the cylindrical bridge pier and upstream submerged vanes. The K-ε turbulence model was also used to solve the Navier-Stokes equations. In order to validate, the results of the simulated model were compared with the available experimental data in the case of submerged vanes located upstream of the bridge pier. The match between the numerical and experimental data indicated the proper performance of the SSIIM numerical model in modeling the flow pattern in the problem under study. The results showed that the range of secondary flow power was measured in all models with the presence of upstream submerged vanes from 10.5 to 12%. In the case where the submerged vanes did not overlap with each other and the placement of the submerged vanes at a distance of 2.5 times the pier diameter from the pier and a distance equal to 2 times the pier diameter from each other and above the pier is the lowest value and in the overlapping state 100 Percentage of vanes, in the arrangement of submerged vanes at a distance of 5 times the pier diameter and 2 times the pier diameter of each other and above the pier has its highest value. Shear stress changes after local scouring were also calculated. The maximum shear stress from the beginning of the bend to near the bend exit was inclined towards the inner bank of the bend and in the bend output range the maximum shear stress was transferred to the middle of the bend and then the second half of the bend. The results also showed that the tangential velocity was increased as the immersion range of the submerged vanes and the pier approached, so that the maximum tangential velocity occurred in the passage through the pier. As the height from the initial bed increases, the maximum positive tangential velocities increase. The results also showed that at the level near the bed, the radial flow is towards the inner bank. The greatest difference in radial velocities, as opposed to tangential velocities, is observed near the bed. The highest changes in the maximum landing number are related to models with submerged vanes at a distance of 7.5 times the pier diameter, which by changing the distance between the vanes from 1 to 1.5 times the pier diameter from each other, an increase of 12.5% And by changing the distance of the submerged vanes to 2 times the pier diameter from each other, it decreases by 11%.

    Keywords: Bridge pier, Submerged vanes, Flow pattern, 180-degree bend, SSIIM numerical model
  • زهرا قدم پور*، محمدصادق نرگس، تورج سبزواری

    همان طور که پرش هیدرولیکی در کانال ها و سازه های انتقال آب روباز رخ می دهد و بررسی وقوع و رفتار آن در این سازه ها مهم و مورد توجه می باشد، این پدیده در خطوط لوله چند فازی و به طور خاص خطوط لوله های فراساحلی که موادی مانند نفت و گاز همزمان جریان دارند و از لحاظ عملیاتی در بستر دریا قابل تفکیک و مقرون بصرفه نیستند نیز رخ می دهند. این تحقیق به بررسی شرایط ساختار الگوهای جریان، پیش بینی و اثرات آن ها در خطوط لوله و به تبع آن بررسی موقعیت پرش هیدرولیکی با توجه به زوایای مختلف خطوط لوله تحت جریان دو فازی آب و هوا پرداخته شده است. نتایج حاصل حاکی از آن است که الگوهای جریانی در زوایای مختلف یکسان بوده به جز در حالت 30 درجه و این امر به علت نزدیک بودن مقادیر افت های اصطکاکی و افت هیدرواستاتیکی می باشد. همچنین بررسی ها حاکی از ان است که سرعت متوسط لازم برای متعادل نگه داشتن بسته های هوا در زوایای مختلف یکسان نیست و عمل شدید پرش هیدرولیکی برای شکست حباب های بزرگتر گاز (هوا) به حباب های کوچکتر که قابل حمل توسط جریان چندفازی می باشد رخ می دهد.

    کلید واژگان: الگوی جریان, جریان دو فازی, پرش هیدرولیکی, رژیم های جریانی, تایتل و داکلر
    Zahra Ghadampour *, MohammadSadegh Narges, Tooraj Sabzevari
    Introduction

    One of the phenomena that has been studied both theoretically and experimentally in hydraulic engineering is hydraulic jump. Hydraulic jump causes the flow to lose a considerable amount of energy due to the change in its regime from supercritical to subcritical. Since fluid flows in a conduit may be either of a free type (open-channels hydraulic) or of an under-pressure type (under pressure conduits hydraulic), the hydraulic jump can occur in both situations regarding the type and function of the system. Therefore, it can be said that hydraulic jump can occur in open channels as stilling basin. It can also occur in downward inclined pipes that contain a large air package. Additionally, since the present paper deals with pipelines, the following general statements can be mentioned about them. Pipelines are used to transfer fluids such as water, oil, gas, and wastewater offshore or onshore, either in the form of two-phase or multi-phase flows. The importance and function of the flows inside the pipeline must be studied. Export pipelines transfer fluids from platforms or FPSO (Floating Production, Storage, and Offloading) to the beach and they usually contain gas-condensate or oil with a little water. Infield pipelines transfer flows from the wells or manifolds to the platform or FPSO [Guo et al (2014)]. Offshore pipeline design includes structural, geometrical, and hydraulic designs. In structural design such matters as buckling and collapse during pipeline operation are considered, and several studies have been carried out regarding these matters. In geometrical design, diameter determination parameters (based on the flow capacity and precise analysis of the flow assurance in offshore pipelines), and wall thickness (according to the standards) are considered, each of which is somehow related to the flow hydraulics. Therefore, hydraulic design of pipeline is of utmost importance and problems related to this area must be examined precisely. However, it needs to be considered that most of the studies about hydraulic jump are carried out on channels, open conduits and stilling basin. Flows in open channels can shift from supercritical to subcritical. Such shifts happen very suddenly and appear due to hydraulic jump [Akan (2006), Lauchlan (2005) and Vasconcelos and Wright, (2009)]. Most of the studies about the hydraulic of pipelines that contain multi-phase liquid and gas flows concentrate on the function of flow regimes, pressure and sever slug. Therefore, it can be claimed that there is a lack in studying hydraulic jump in under pressure pipelines with multi-phase liquid-gas flows, because most of the studies are carried out on wastewater transfer lines and open conduits. The present paper, therefore, deals with the numerical analysis of hydraulic jump in pipelines with two phase water-air flows. To this aim, some experimental information has been taken from Pothof (2011) to verify the accuracy of findings and numerical modeling. It must be noted that Pothof has worked on wastewater pipelines that function gravitationally, while this study deals with under pressure pipelines in offshore conditions.

    Methodology

    Regarding Pothof's experimental work (2011) which analyzes the occurrence of hydraulic jump, and using its data, the hydraulic jump is then numerically analyzed.In order to analyze the hydraulic jump numerically, roughness values, geometrical properties of the pipeline, and the angles are specified. General characteristics of the submerged pipe are also presented. Some other properties include: diameter=8in, water flowrate=128160kg/hr, air flowrate=32040kg/hr.Pressure loss in pipelines with multi-phase flows, includes frictional and hydrostatic pressure loss, is calculated based on mixture density and velocity. In hydrostatic pressure loss, it must be noted that since in horizontal pipelines ΔZ=0, the pressure loss istherefore zero, too. In upward inclined pipelines this value is positive (in line with increasing the total loss) and in downward inclined pipelines it is negative (in line with decreasing the total loss). In order to determine flow regimes semi-theoretically, Taitel and Dukler (1976) first modeled a stratified flow in a pipe, presupposing that the flow has been stable. Then, they determined how the flow regime was transferred from stratified to other flow regimes. The results of their analyses that are presented in a map for two-phase gas-liquid flow is used in this paper to determine flow regimes in two phase flow.

    Discussion

    Hydraulic jump occurs in open water transfer structures and channels and its behavior and occurrence in such situations is studied precisely. Similarly, it is important to study it in pipelines, because it affects the behavior of the fluid inside the pipeline. When there is a pipeline containing a two-phase water-air flow, it can be assumed that the fluid inside the pipeline might face a hydraulic jump. Predicting such a phenomenon and its effects on pipeline during its working lifetime is a very important issue in the industries that deal with pipelines which transfer multi-phase fluids. Therefore, the present paper studies the occurrence of hydraulic jump in pipelines with two-phase water-air flows.

    Conclusion

    It can be concluded, based on the hydraulic gradient and the resulted losses, that hydraulic jump occurs when there is some air in the pipeline; and as the experimental researches showed, as the angle increases, the jump height increases, too. In all of the above- mentioned analyses except for the mode in which the angle is 30 degrees, flow regimes, according to Taitel and Dukler are annular mist for A-B, annular mist for B-C, and annular mist for B-D. Regarding what has been said, it can be stated that when total pressure loss in the negative direction (i.e., when the hydrostatic loss overcomes frictional loss) approaches zero, the flow regime might change.

    Keywords: Flow Pattern, Two-phase flow, Hydraulic jump, Flow regime, Taitel, Dukler
  • زهرا بهروزی، حسین حمیدی فر*، محمدعلی زمردیان

    ساختار جریان در اطراف پایه پل بسیار پیچیده است. به دلیل شرایط خاص هندسی و سازه ای برخی موارد ایجاب می نماید که پایه ها به صورت دوتایی با چیدمان های خاص کنار یکدیگر قرار گیرند که این امر منجر به پچیده تر شدن ساختار جریان اطراف پایه می شود. در این پژوهش، تغییرات سرعت جریان و انرژی جنبشی آشفته اطراف تک پایه و گروه پایه های پل دوتایی با مقطع دایره، در حالتی که پایه ها به سه صورت پشت سر هم، کنار هم و زاویه دار نسبت به جهت جریان قرارگرفته اند، با استفاده از نرم افزار فلوینت شبیه سازی شده است. مولفه های سه بعدی سرعت، خطوط جریان و خطوط هم تراز سرعت برای هر دو حالت تک پایه و دو پایه بررسی شده اند. با مقایسه مقادیر سرعت طولی بین داده های آزمایشگاهی و شبیه سازی شده در دو مقطع عرضی انتخابی، خطای میانگین برای مدل تک پایه برابر با 3/7 درصد و برای مدل دو پایه پشت سر هم برابر با 54/3 درصد به دست آمد. همچنین مقدار مولفه طولی سرعت در مدل دو پایه پشت سر هم، دو پایه کنار هم و مدل زاویه دار نسبت به تک پایه به ترتیب 34/2 % و 27/9 % کاهش و 87/8 % افزایش داشته است. به طور کلی، به دلیل وقوع کمینه مقادیر سرعت و انرژی جنبشی آشفته، مناسبترین حالت قرارگیری پایه ها در مسیر جریان به صورت کنار هم توصیه می شود.

    کلید واژگان: سرعت جریان, سیلاب, شبیه سازی عددی, فلوئنت, میدان جریان
    Zahra Behrouzi, Hossein Hamidifar *, MohammadAli Zomorodian

    Flow structure around bridge pier is a very complicated phenomenon. Due to the special geometric and structural conditions in some cases, it is required that the piers be placed in pairs next to each other with special arrangements, which leads to a more complex flow structure around the piers. In this study, the variations of the flow velocity and turbulent kinetic energy around single and the twin bridge piers with a circular cross section is simulated using the Fluent model. The twin piers are placed in three configurations including tandem, side-by-side, and at inclined with the flow direction. The three-dimensional components of flow velocity, streamlines, and velocity contours have been investigated for both single and twin piers. By comparing the longitudinal velocity between measured and simulated conditions in two selected cross sections, the average error for the single tandem piers was 7.3% and 3.54%, respectively. Also, the longitudinal velocity in the tandem, side-by-side and inclined piers has decreased by 2.34% and 9.27% and increased by 87.8%, respectively, compared to the single pier conditions. In general, due to the minimum values of turbulent velocity and kinetic energy, the side-by-side model is recommended as the most appropriate arrangement of the piers with respect to the flow direction.

    Keywords: Flow pattern, velocity, bridge pier, Simulation, Fluent
  • حامد شهسواری، سعیدرضا خداشناس*، کاظم اسماعیلی

    کانال های مرکب پیچانی در طبیعت به وفور یافت می شوند، که شامل کانال اصلی برای انتقال جریان در مواقع عادی و یک یا دو سیلابدشت (معمولا پوشیده از گیاه) در طرفین در هنگام سیلاب می باشند. بنابراین بررسی ویژگی جریان در این نوع کانال ها برای شناخت و درک بهتر از جریان در شرایط سیلابی ضرورت می یابد. در این تحقیق به بررسی آزمایشگاهی تاثیر پوشش گیاهی صلب غیرمستغرق موجود در سیلابدشت بر شرایط جریان و نقش آن در حفاظت از سیلابدشت ها در دو عمق نسبی 35/0 و 55/0 پرداخته شده است. داده های سرعت با استفاده از سرعت سنج صوتی داپلر ثبت و مورد تجزیه و تحلیل قرار گرفت. نتایج نشان داد که وجود پوشش گیاهی در سیلابدشت در عمق نسبی ثابت و تراکم 77/0 درصد در واحد یک متر مربع سطح موجب کاهش انتقال جریان گشته طوری که دبی در اعماق 35/0 و 55/0 بترتیب برابر با 23 و 12 درصد کمتر شده است . الگوی خطوط همتراز سرعت طولی نشان می دهد در حضور پوشش گیاهی در هر دو عمق نسبی جریان به سمت کانالی نسبت به حالت بدون پوشش بیشتر منحرف می شود. همچنین تغییرات مولفه سرعت عرضی و قایم در سیلابدشت با پوشش گیاهی بسیار بیشتر از حالت بدون پوشش است. علاوه براین پوشش به کار رفته موجب افزایش تنش برشی در دشت سیلابی و کاهش انرژی جنبشی آشفتگی (TKE) در اکثر نواحی شده است. 

    کلید واژگان: پیچانرود, پوشش گیاهی, الگو جریان, عمق نسبی, سیلاب
    Hamed Shahsavari, Saeed Reza KHODASHENAS *, Kazem Esmaili
    Introduction

    Rivers can be classified as straight, meandering and braiding, Meandering is the most common plan-form acquired by natural rivers. The meandering channel flow is considerably more complex than the straight channel. Compound meandering channels are abundant in nature that including the main channel for the flow in normal times and one or two floodplain (usually covered with plants) at the sides during floods. Vegetation is an important property of many rivers, enhancing amenity values for people and providing habitat for other organisms. Vegetation stabilizes stream banks, provides shade that performs an essential role in nutrient cycling and water quality and supports wildlife. Therefore, it is necessary to study this issue in order to better understand the flow during floods. This study is focused on the influence of vegetation on overbank flow characteristics. In this research, the effect of non-submerged rigid artificial vegetation in the floodplain on two relative depths of 0.35 and 0.55 has been studied in the laboratory.

    Methodology

    The experimental research was carried out in a non-mobile bed meandering channel constructed in a 10 m long and 0.78 m wide flume which included the main channel and two floodplains on its sides. The channel wavelength and meander belt width were one meter and 0.58 m, respectively with the sinuosity of 1.3. The geometrical parameters for the main channel were: width, Bmc=0.2 m and depth, Hmc= 0.1 m. Plastic cylinders of 9mm diameter are used to simulate the emergent floodplain vegetation. A movable weir located at downstream of flume controlled water level. Velocity data were extracted and analyzed using Acoustic Doppler Velocimetry. The minimum recording time for each point velocity was 60s. ADV measures the 3D velocities of water particles located 5 cm below its probe. The measurement sections located 6 m downstream of channel inlet, with the names of S1 to S5.

    Results and discussion

    The results showed that the presence of vegetation in the plain flood for a constant relative depth has reduced the flow capacity. The decrease in discharge for depths of 0.35 and 0.55 is equal to 23 and 12 percent, respectively, for a density of 0.77 percent per unit area of one square meter. The pattern of contour lines of the longitudinal velocity in the main channel in the presence of vegetation changes at both relative flow depths relative to the uncovered state. The absolute values of velocity in the main channel in the uncovered state are greater than in the covered state. Also, the values in the transverse and vertical velocity components in plain floods with vegetation are much higher than in uncovered conditions. The directional secondary vectors of the flow in section S1 indicate a counter-clockwise flow in the main channel. The presence of vegetation at a relative depth of 0.55 has reduced the size and values of these vectors in both the main channel and the floodplain. It seems that the presence of coverage, as observed during the experiments, has changed the patterns and directions of vectors on the floodplain. These changes are also observed at the relative depth of 0.35, but specifically the presence of vegetation at this relative depth has caused the flow transfer from the right floodplain to the left floodplain. For all sections, the average values of longitudinal velocity on both sides of the floodplain are greater than the uncovered state and increase by moving away from the main channel to the glass wall of the channel. Although the capacity of covered flow is less than the uncovered one, flow velocities in and around the main channel seem to be close to those measured in uncovered channel. This indicates the high impact of floodplain vegetation on the hydraulics of the flow in the compound meandering channels. Also, the presence of cylinders has increased turbulence and consequently increased shear stress. The values of shear stress at the bottom of the main channel and the convex coast of the floodplain are higher than other areas. In addition, the cover has increased shear stress in the floodplain and reduced the kinetic energy of turbulence (TKE) in the floodplain.

    Conclusion

    In this study, using a laboratory model, the effect of non-submerged rigid artificial vegetation on the floodplain of a compound meandering channel was investigated. The following is a summary of the results of this study. The presence of vegetation reduced the water transfer capacity, due to the increased resistance to flow. The average longitudinal velocity of the flow in the cross section of the channel in the uncovered state is higher than in the case with the cover. Due to the non-submerged rigid artificial vegetation used, the shear stress in the floodplain has increased. Keywords: Flood, Flow Pattern, Meander Channel, Relative Depth, Vegetation

    Keywords: flood, Flow Pattern, Meander Channel, Relative Depth, Vegetation
  • نرگس رئیسی*، مهدی قمشی

     تاکنون مطالعات مختلفی در خصوص شناخت مکانیزم آبشستگی اطراف سازه های هیدرولیکی و بخصوص پل ها انجام شده است. در زمینه آبشستگی اطراف پل ها تمرکز پژوهش ها بیشتر بر روی پایه بوده، ولی به نتایج اثر بخشی در مورد پدیده آبشستگی پیرامون پایه ها دست نیافته اند. بررسی منابع نشان می دهد، که شکل پایه بر میزان آبشستگی پیرامون آن تاثیر به سزایی دارد، و در بین اشکال مختلف پایه، پایه استوانه ای بیشترین میزان آبشستگی را دارد. بنابراین در این پژوهش با انتخاب شکل استوانه ای برای پایه پل با مقطع دایره ای، علاوه بر بررسی تاثیر عدد فرود در دو زمان 13 و 5 ساعت، بر میزان آبشستگی پیرامون آن مورد بررسی قرار گرفت. نتایج نشان داد، که با افزایش عدد فرود در زمان های نام برده، عمق آبشستگی افزایش و بر وسعت چاله آبشستگی افزوده می شود. همچنین با افزایش ارتفاع تراز نصب طوقه بر روی پایه پل، عمق آبشستگی و وسعت چاله آبشستگی افزایش می یابد. در ادامه این پژوهش مولفه های سه بعدی سرعت جریان پیرامون پایه با استفاده از سرعت سنج ADV تعیین و برای رسم میدان جریان مورد استفاده قرار گرفتند. بررسی آن نشان داد، سرعت بیشینه در نزدیکی بستر و بالای گودال تشکیل می شود، که دلیل آن تقویت جریان های ثانویه است، و گردابه های عمودی در نقطه جلوی پایه شکل گرفته که عامل اصلی آبشستگی و توسعه آن پیرامون پایه پل می باشد.

    کلید واژگان: الگوی جریان, مدل آزمایشگاهی, آبشستگی, پایه پل
    Narges Raeisi *, Mehdi Ghomeshi
    Introduction

    Investigation of the scour phenomenon is very important. If it is not possible to control the scour around structures such as bridges or bridge supports. Includes irreparable damages. The scour around the bridge piers causes to instability of them, and without applying an appropriate solution, it eventually leads to demolition of the structure. Therefore, study on the mechanism of the occurrence of the scour and the effective parameters on amount of scour are important. So, already various studies have been done on the mechanism of scour around hydraulic structures especially bridges. In the field of scour around bridges, researches are more focused on scour of piers, but no effective results were obtained on the scour phenomenon around the piers. Bed erosion and transport of sand material from its location by a flow called scour. Local scour is a special type of scour that may occur around the bridge piers or bridge abutments. This type of scour is main reason of many bridge failures in the word. Because of this, supply of methods to control and reduce these phenomena is important. One of the methods of scour reduction around the bridge pier or abutment is installation a thin flat rigid plate (collar) on the pier or abutment. There is no comprehensive study to use this method for protecting the pier against scour so far. Therefore, this topic was considered for this research.

    Methodology

    This study was performed in the flume with a length of 6 m, a width of 0.72 m, a height of 0.6 m and constant bed slope equal to 0 m in Hydraulic Laboratory of Shahid Chamran University. The bed materials were non cohesive sediment with an average diameter equal to 0.73 mm and geometric standard deviation of 1.22. As well as Plexiglas plates with a thickness of 3 mm was used to build the collar. In this study, 27 tests were performed to measured, sediment movement and determine the two-dimensional velocity components. In each section, a series of tests were performed as a control experiment. The tests of sediment were done in the 3 of flow rate equal to 25, 30 and 35 liters per second. In this condition, Froude Number was equal to 0.26, 0.32 and 0.37 respectively. The 3 unsymmetrical collars with different dimensions in four three Numbers were tested. To do so first general non dimensional relationship was developed. Then series of experimental tests were conducted in a physical model using three different Zc (0, 0.25 and 0.5 high).

    Results and discussion

    Dimensionless plots were obtained regarding effect of dimension of both collars on scour reduction around bridge pier. Different positions of installation of collar were investigated. Dimensionless plots were obtained for determination of collar performance in various heights. Different positions of installation of collar were investigated. Dimensionless plots were obtained for determination of collar performance in various heights. In this section, one of the collars had the best performance, and it was called optimum collar. Local scour around a bridge pier results from the flow and pier interaction and separation of the flow at the sides of the pier. One of the methods used as a local scour countermeasure at bridge piers is collar. Then, we have been check about netted unsymmetrical collar. Also two tests were performed to determine three-dimensional components of velocity in different depth. The results show that the performance of collar in unsymmetrical collar improve by increasing its dimension. The collars located on the bed performance are better than the one located above the bed.

    Conclusion

    The results show that the collars have important role in retardation of scour development. In section of determination of three-dimensional components of velocity, the results show that the collar act as a shield against down flow. It can control the horseshoe scour around the pier. Literature review shows that cylinders forms, the maximum scour depth occurs in the case of cylindrical pier. Therefore, in this research cylindrical shape for circular bridge pier was selected and effects of Froude number were investigated on scour development. Result shows, that increasing froude numbers will increase the amount scour. Also, as the height of the collar mounting height is increased, the scour depth and the width of the scour hole increase. Following this research, three-dimensional components of velocities were determined with adv. velocimetry and then use for drawing flow pattern. Also result confirms that, maximum velocity occurs near the bed, because the down flow developed the significant secondary currents, and down flow and generated vortex are effective parameters on bridge scour.

    Keywords: Flow pattern, Laboratory model, Scour, bridge pier
  • مهین اسحاقیان، سعید گوهری*، سید سعید اخروی
    آبشستگی پایه پل یکی از مهم ترین مسایل در ایمنی پل ها می باشد. با توجه به فیزیک طبیعی مصالح رودخانه ای (رسوبات غیریکنواخت) و اثرگذاری بالای آن بر ابعاد و تکامل زمانی گودال آبشستگی، بررسی برهم کنش جریان و سازه با بستر رسوبی غیریکنواخت به دلیل تشکیل لایه سپر از اهمیت بالایی برخوردار است. بدین منظور، بررسی توسعه زمانی آبشستگی در اطراف تک پایه دایره ای در بسترهای رسوبی با شرایط دانه بندی متفاوت مورد آزمایش قرار گرفت. لایه سپر توسعه یافته از انتقال انتخابی ذرات ریزتر در رسوبات غیریکنواخت سبب پیچیدگی در تخمین عمق آبشستگی می شود. در این پژوهش، 15 آزمایش در قالب 5 بستر رسوبی مختلف، یکنواخت و غیریکنواخت، در دو جریان ماندگار (20 و 35 لیتر بر ثانیه) و یک جریان غیرماندگار صورت گرفته است. نتایج نشان داد که با افزایش دبی جریان (افزایش عمق جریان، اثر h/b، در شدت جریان مشابه، u/uc) در بسترهای رسوبی یکسان، نه تنها عمق آبشستگی در حدود 27 درصد افزایش یافته است، بلکه لایه سپر درشت تری در سطح بستر ایجاد می شود. مقایسه آزمایش های متناظر در بسترهای یکنواخت و غیریکنواخت نشانگر کاهش قابل ملاحظه (تا 70 درصد) عمق حداکثر آبشستگی با افزایش میزان غیریکنواختی ذرات است. اگرچه میزان کاهش قابل توجهی در عمق آبشستگی با افزایش غیریکنواختی ذرات در بین دو بستر غیریکنواخت مشاهده نشد. کاهش قطر میانه ذرات (افزایش نسبت b/d50) در بسترهای غیریکنواخت با درنظرگیری انحراف معیار هندسی یکسان، سبب افزایش میزان عمق آبشستگی شده است.
    کلید واژگان: آبشستگی, الگوی جریان, پایه پل, لایه سپر, رسوبات غیریکنواخت
    Mahin Eshaghian, Saeed Gohari *, Seyyed Saeid Okhravi
    Introduction
    Bridge scour is one of the most important challenges in river engineering. Research into local scour has primarily focused on investigating the impact of different hydrodynamic conditions on scour in a bed of uniformly graded material. However, local scour investigations in a bed of uniformly well-graded material provided knowledge of the underlying processes, field sediment beds are much more complex consisting of non-uniform sediment mixtures ("σ" _"g" ">1.4" ). In the case of complex sediment beds, selective transport of the finer particles due to unequal mobility can make the bed surface to be armored. There have been relatively few studies reported in the literature relating to scour in complex sediment beds, and most of these relate to quite specific situations. With regards to natural river materials (non-uniform sediments) and its great effects on the dimension and the time evolution of scour hole, the interaction of flow-structures with non-uniform sediments is very crucial due to armor layer development. The aim of this study is to improve understanding of scour development and armoring evolution in non-uniform sediment beds for estimating the scour depth in more realistic field conditions. Therefore, the rate of variation of erosion over time around single cylindrical pier is investigated in different bed sediment types.
    Methodology
    The armored layer due to selective transport of the finer particles in non-uniform sediments causes complexity for predicting equilibrium scour depth. The present experiments on local bridge scour were conducted in hydraulic laboratory of the Bu-Ali Sina University (Hamadan, Iran). The pier model with a diameter of 4 cm was put inside a 0.5 m wide, 10.5 m long and 0.5 m depth rectangular tilting flume. In this study, the number of 15 experiments were organized at five different sediment beds, uniform and non-uniform in two steady flow condition (20 and 35 l/s with the same flow intensity of u/uc~0.9) along with an unsteady flow. The duration of tests was fixed at 8 hours in all runs based on the empirical method given by Ettema (1980).
    Results and Discussion
    The experimental results revealed that with increasing flow rate from 20 to 35 l/s (increasing follow shallowness, h/b) at the same sediment bed, not only larger scour depths were recorded, but also the armor layer became coarser. The comparison between the bed configurations with uniform and non-uniform sediments represented dramatical reduction of the scour depth regards with increasing sediment non-uniformity. The effect of non-uniform sediments on scour in a current clear water conditions showed that maximum scour depth was less than scour depth in a uniform sand with the same d50 value. The comparison between these two mentioned bed configurations showed that the change in geometric standard deviation ("σ" _"g" ) from 1.4 to 2 (altering the uniform bed to non-uniform), decreased the maximum depth of scour by 70% and 60% in two corresponding experiments. As the armor layer coarser grains remains at upstream flow bed and at the vicinity of scour hole in the same flow intensity, the scour depth was decreased. Otherwise, there was not remarkable decrease on the scour depth by increasing non-uniformity index, since two sediment beds types were non-uniform. Also, a slight increase on scour depth has been observed by reduction of median grain size in the beds with non-uniform sediments at the same geometric standard deviation. By taking into account of the grain size of the armor layer and ice cover roughness, Wu et al. (2014) analyzed the dimensionless maximum scour depth and they found out that with an increase in grain size of the armor layer, the dimensionless maximum scour depth decreases. Singh et al. (2018) investigated the incipient motion for gravel particles in cohesionless sediment mixtures having silt and sand. The visual observations of the channel bed after the end of incipient motion indicated appearance of gravel particles at the top surface of the sediment bed. The critical shear stress for the gravel particles was found to be lower in the presence of silt. Presence of silt in the mixture affects the critical shear stress for gravel particles. They concluded from the present study that high silt content in the mixture leads to the higher deviation of critical shear stress from the revised Shields curve. They proposed an equation for the determination of critical shear stress of gravel particles in the non-uniform sediment mixture.
    Conclusion
    The results showed that scour depths were reduced dramatically as sediment non-uniformity index ("σ" _"g" ) increase in clear water conditions. The larger particles form an armor layer protecting the bed from eroding. Also, the observation indicated that with increasing flow depth, the armor layer coarsens, and larger scour depths were recorded. However, scour depth increase rate was very different for the various bed sediment types.
    Keywords: Scour, Flow Pattern, bridge pier, Armor Layer, Non-Uniform Sediment
  • زینب بادپا*، مجید فضلی

    از جمله روش های حفاظت از سواحل که در دهه های اخیر در رودخانه ها مورد توجه قرار گرفته است، استفاده از آبشکن هاست. آبشکن ها بر روی خطوط جریان اثر گذاشته و با ایجاد تغییراتی در سرعت و جهت جریان موجبات تغییرات عمده در توپوگرافی بستر در اطراف آبشکن و هم چنین سواحل را فراهم می آورند. شناخت و جهت دهی به این تغییرات منجر به ساماندهی به صرفه رودخانه در نواحی موردنظر خواهد شد. در تحقیق حاضر تاثیر آبشکن های باز توری سنگی قائم، جاذب و دافع در مسیر جریان بر توپوگرافی بستر و الگوی جریان مورد بررسی قرار گرفته است. در این بررسی عملکرد آبشکن های مذکور با آبشکن بسته مقایسه خواهد شد. نتایج نشان می دهد که با کاهش درصد تخلخل آبشکن ها، انحراف جریان اصلی و شدت جریان های ثانویه حول آبشکن افزایش یافته که این امر موجب افزایش تغییرات توپوگرافی بستر و ایجاد حفره های بزرگ تر حول آبشکن می شود. با افزایش شدت فرسایش حول آبشکن، رسوبگذاری در کناره ها افزایش می یابد.
    بیشترین آبشستگی (نسبت آبشستگی به عمق جریان) مربوط به آبشکن قائم بسته به میزان 9/0 و کمترین این پارامتر مربوط به آبشکن جاذب با تخلل 50 درصد به میزان 23/0 می باشد. حداکثر مقادیر آبشستگی برای همه آبشکن ها در دماغه آبشکن رخ داده است. همچنین در بررسی مقادیر حداکثر سرعت طولی، عرضی و قائم سرعت، به ترتیب برای آبشکن قائم بسته 43، 20 و 14- سانتی متر بر ثانیه و برای آبشکن جاذب با تخلخل 50 درصد، 43، 9/15 و 11- سانتی متر بر ثانیه می باشد.

    کلید واژگان: آبشکن توری سنگی, الگوی جریان, درصد تخلخل, توپوگرافی بستر
    Zainab Badpa*, Majid Fazli

    One of the usual methods for river banks protection is using spur dike structures that if properly designed and executed, in addition to controlling erosion, It leads to the rehabilitation of rivers margin valuable lands. Spur dikes affect the streamlines and it make changes in the velocity and direction of the flow, leading to major changes in the bed topography around the spur dike as well as the beaches. Recognizing and directing these changes will lead to the River Affordable Planning in the desired areas.  In the present study, the effect of the Deflecting open gabion spur dike, attracting and repelling on the bed topography of the flow path and flow pattern has been investigated. ADV was used to measure flow velocity in different directions. This velocity meter is submitted by transmitting waves of 10 or 16 MHz frequency from a transmitter to a sample size of 6 mm in diameter and 3 mm in diameter at a distance of 5 cm from the transmitter and receiving waves by receiver antennas measures the velocity of particles within the sampling volume. The device has the ability to measure the distance from the floor inside the water. Therefore, taking into account the baseline level, the measured distance at each point was deducted from the base value and the scouring of that point was obtained. In these experiments, the Froude number was fixed at 0.26. Also, the depth of flow in the set of experiments is 14.6 cm, which is extracted according to the discharge rate and the displacement threshold formula. The experiments were carried out in such a way that after the equilibrium of the bedding and scouring harvest, the flow pattern was started using the ADV device.
     In this review, the performance of the spur dikes will be compared with the impervious spur dike. The results show that by decreasing the porosity of the spur dikes, the mainstream deviation and the intensity of the secondary flows around the spur dike have increased, which increases the topographic changes of the bed and creates larger cavities around the spur dike. As the erosion rate increases around the spur dike, sedimentation on the edges increases.In all three types of spur dikes, with increasing porosity, the dimensions of the scour hole are reduced. By increasing the porosity of the spur dike, the flow velocity from the pores of the spur dike increases, which reduces the difference in the flow rate from the headland and the flow through the pores of the spur dike and reduces the ability to carry flow sedimentation. In a spur dike with 50% porosity, bed topography changes occurred in a very small area around the spur dike and focused on the nose, while for a spur dike with zero porosity, the topography of the bed, depending on the type of spur dike, is several times the length of the spur dike, in Channel length and width occurred. The attracting spur dike has created much less variation in the flow pattern due to the way it is placed in the path of flow, and therefore the bed topography is less influenced by the presence of the spur dike.

    Keywords: gabion spur dike, flow pattern, Porosity percentage, bed topography
  • Flow Pattern Around Attractive, Vertical, and Repelling T-Shaped Spur Dikes in a Mild Bend Using CFD Modeling
    Mohammad Vaghefi *, Parisa Radan, Maryam Akbari
    This piece of research presents flow pattern around a T-shaped spur dike in repelling, attractive, and vertical positions in a 90° mild. To this aim, SSIIM CFD software, one of the most powerful software applications in hydraulic engineering field, was employed. In this research, Navier–Stokes equations and k–ε turbulent model were used for solving the flow field. The numerical results were verified using the experimental data. The comparison between the results of numerical simulation and experimental data collected by ADV velocimeter indicated a desirable agreement. The numerical results showed that the dimensions of the vortex at the downstream side of the spur dike reduced by increasing the angle of the spur dike. Moreover, the secondary flow strength value was the maximum for attractive and then repelling modes. Variation of the secondary flow strength for repelling, attractive, and vertical modes ranged from zero to 45, 35, and 25% respectively. Although the range of the secondary flow values in vertical mode for both numerical and experimental models was identical and about 0–25%, less than a 5% error between these two models demonstrated that the amount had been reasonable. By determination of flow separation zones, it was observed that, for all the three modes, the separation zone length increased by increasing the elevation. In addition, the lengths of the separation and reattachment zones were equal to 1.2–2.7 and 1.57–4.18 times the spur dike wing length.
    Keywords: T-shaped spur dike, Attractive, repelling spur dikes, 90° bend, Flow pattern, Numerical model, SSIIM
  • پری ملکی، جواد احدیان*، سیدمحمود کاشفی پور، منوچهر فتحی مقدم، آنتون اشلایز
    یکی از روش های نوین حفاظت از سواحل رودخانه های آبرفتی در محل قوس ها و بهبود شرایط کشتیرانی استفاده از سازه سیستم تزریق هوا است. در این تحقیق به بررسی آزمایشگاهی تاثیر این سازه بر توپوگرافی بستر و الگوی جریان در کانال قوسی 90 درجه ملایم پرداخته شده است. بدین منظور آزمایش هایی تحت شرایط هیدرولیکی مختلف در اعداد فرود 37/0، 41/0، 45/0 و 47/0 و با 3 زاویه 0، 45 و 90 درجه و با 3 دبی تزریق هوا انجام شدند. نتایج نشان دادند وجود سازه در قوس موجب اصلاح الگوی مورفولوژی و توزیع سرعت شد به طوری که بیشینه عمق آبشستگی را 47% کاهش و آن را از قوس بیرونی دور نمود و بیشینه سرعت را از قوس بیرونی دور کرده و به میانه فلوم منتقل نمود، علاوه بر آن زاویه 90 درجه دارای کمترین و زاویه صفر درجه بیشترین آبشستگی را در قوس خارجی دارند. همچنین با افزایش دبی تزریق هوا عمق آبشستگی کاهش یافت.
    کلید واژگان: قوس رودخانه ها, آبشستگی, سیستم تزریق هوا, جریان ثانویه, الگوی جریان
    Pari Maleki, Javad Ahadian *, Seyed Mahmood Kashefipor, Manochehr Fathi, Moghadam, Anton Schleiss
    An air-bubble screen is an innovative technique for riverbank protection along the bends which improve the navigation conditions in the alluvial rivers. In this research, the effects of this structure on a 90° mild and long bend on the bed morphology and flow pattern have been investigated. To this end, the experiments were carried out with three angles 0, 45, 90 degree and four Froude numbers of 0.37, 0.41, 0.45, 0.47 combined with three air discharge. Experiments performed in a mild bend using clearwater showed that the bubble screen was able to redistribute the velocity patterns and bed morphology in the bend. In addition, the results showed that maximum bend scouring is reduced about 47% andoccurs further away from the outer bank and high velocity zone shifted toward the center of the channel. The results showed that the maximum and minimum scour depths in outer bank with 0 and 90 degrees angles respectively. Also, by increase of air discharge ratio the maximum scour depth was decreased.
    Keywords: Rivers bend, Scour, Air -Boubble screen, Secondary flow, Flow Pattern
  • محمد ذونعمت کرمانی*، سرگل معمار، مجید رحیم پور، علی اصغر بهشتی، آنتون اشلایز
    در این مطالعه تاثیر زاویه قرارگیری دو پایه پل نسبت به جهت جریان بر روی عمق تعادل آبشستگی در جلو پایه ها تحت شرایط آبشستگی آب زلال بررسی می شود. بدین منظور پایه ها با 4 زاویه مختلف نسبت به جهت جریان قرار داده می شوند. افزون بر این جهت حصول عمق تعادل آبشستگی در جلو پایه ها، آزمایشها تا رسیدن به زمان تعادل آبشستگی انجام میگردند. نتایج نشان می دهد که افزایش زاویه قرارگیری پایه ها، عمق و زمان تعادل آبشستگی در پایه ها را افزایش می دهد. کمینه و بیشینه عمق تعادل آبشستگی برای هر دو پایه به ترتیب در زوایای 0 و 60 درجه مشاهده می شود. با توجه به تجزیه و تحلیل نتایج، بیشینه عمق تعادل آبشستگی در جلو پایه ها، برای زوایای کوچکتر و مساوی 28 درجه در پایه بالادست حادث می گردد، درحالی که برای زوایای بزرگتر از 28 درجه به پایه پایین دست منتقل می گردد. در ادامه با بکارگیری روش رگرسیون خطی نیمه لگاریتمی و داده های مشاهداتی روابطی برای تخمین عمق آبشستگی درجلو پایه ها ارائه می شوند.
    کلید واژگان: آبشستگی, اثر محافظت, الگوی جریان, گرداب نعل اسبی, پایه پل
    Mohammad Zounemat, Kermani *, Sargol Memar, Majid Rahimpour, Ali, Asghar Beheshti, Anton Schleiss
    In this study, the impacts of skew angle of two bridge piers with respect to the flow direction on the equilibrium scour depth in front of the piers under clear water condition is investigated. For this purpose, the piers are aligned with four different skew angles with respect to the flow direction. Additionally, to obtain the equilibrium scour depth in front of the piers, the experiments are performed until reaching the equilibrium time. The results show that increasing the skew-angle increases the equilibrium scour depth and time. The minimum and maximum equilibrium scour depths at both piers occur at the skew-angles of 0 and 60 degree, respectively. Regarding the analysis of the results, the maximum equilibrium scour depths in front of the piers, for the skew angles less than 28 degree occur at the upstream pier while for the skew angles greater than 28 degree is shifted to the downstream pier. In the following, formula are provided to estimate the scour depths in front of the piers, utilizing the Semi-logarithmic linear regression method and observed data.
    Keywords: Scour, Sheltering effect, Flow Pattern, Horseshoe vortex, bridge pier
  • سعید عباسی *، پوریا تقوایی، حنیف پورشه باز
    آبشکن ها به عنوان یکی از مرسوم ترین سازه های هیدرولیکی که در جهت کاهش فرسایش سواحل و کرانه های رودخانه ها استفاده می-شوند، شناخته شده اند. این سازه ها با تغییر الگوی جریان و الگوی انتقال رسوبات می توانند شرایط هیدرولیکی را کنترل کرده و از فرسایش سواحل جلوگیری و باعث رسوبگذاری در آن ها شوند. در این مقاله، اثرات تغییرات زاویا، چینش های متفاوت آبشکن ها (بزرگ به کوچک ویا برعکس) بر روی الگوی جریان، فرسایش و رسوب-گذاری بستر تحت سری آبشکن های موازی، غیرمتخلخل و غیر مستغرق با طول نامساوی به صورت عددی مورد بررسی قرارگرفته است. اعتبارسنجی نتایج مدل عددی ساخته شده در نرم افزار FLOW-3D با نتایج مدل آزمایشگاهی، نشان دهنده دقت بالای مدل می باشد. همچنین نتایج نشان می دهد که در چینش آبشکنها از بزرگ به کوچک، عمق آبشستگی در زاویهی 45 درجه، 55 درصد و در چینش کوچک به بزرگ با زاویه 135 درجه، این عمق 72 درصد نسبت به آبشکن با طول مساوی و در حالت عمود بر ساحل کاهش دارد.
    کلید واژگان: سری آب شکن ها با طول نامساوی, مدل سازی عددی, فرسایش, رسوب گذاری, الگوی جریان
    Saeed Abbasi *, Hanif Poorshahbaz, Pouria Taghvai
    Spur dikes are known as the most popular hydraulic structures which are utilized to reduce shores and river banks erosion. These structures change the flow and sediment transport pattern and so they can control hydraulic conditions and prevent shores erosion and cause sediment trapping. In this paper effects of changes in angles and various arrangement of spur dikes (small to large or vice versa) for group of parallel, unequal, non-submerged and impermeable spur dikes are numerically investigated on flow pattern, bed erosion and sedimentation. Validation of results of Flow-3D numerical model with experimental data, shows the high precision of the numerical model. Also the results show that scour depth in large to small arrangement of the spur dikes and 45 degrees orientation has 55% reduction and in small to large arrangement and 135 degrees orientation has 72% reduction in comparison with group of equal length spur dikes perpendicular to the shore.
    Keywords: Group of spur dikes with unequal lengths, Numerical simulation, erosion, sedimentation, flow pattern
  • Chonoor Abdi Chooplou, Mohammad Vaghefi *, Syyed Hamed Meraji
    In this paper, submerged vanes were placed at the upstream area of a bridge pier located at the 90 degree angle. Then, using the laboratory equipment, a study of flow pattern was conducted throughout the bend, specifically around the pier and submerged vanes. ADV velocimeter was incorporated in order to help measure 3D velocity components. Submerged vanes were installed at distances of 40 and 60% of the channel width from the inner bank at the upstream area of the bridge; while the distance between the vanes and the pier (5 times the pier diameter) and the distance between the vanes themselves (3 times the pier diameter) were held constant during the experiments. The results demonstrated that moving the submerged vanes towards the outer bank created a vortex at a distance of 5 times the pier diameter from the center of the pier in upstream direction at a distance of 33% of the channel width from the inner bank at a height of 6.9 cm, equal to 30 times the flow depth from the bed.
    Keywords: Flow Pattern, Bridge Pier, Submerged Vanes, Velocity Contours, 180 Degree Sharp Bend
  • Hojat Karami, Saeed Farzin *, Mohammad Badeli, Sayed, Farhad Mousavi
    In many cases, a set of obstacles, such as bridge piers and abutments, are located in the river waterway. Bridge piers disrupt river’s normal flow, and the created turbulence and disturbance causes diversion of flow lines and creates rotational flow. Geometric shape and position of the piers with respect to flow direction and also number of piers and their spacing are effective on changing the river-flow conditions, such as formation of vortices, their breakdown and hydrodynamic forces exerted on the piers. This study has been performed by using the two-dimensional, open-source, OpenFOAM software. After selecting the grid size in GAMBIT software, different pier shapes were investigated, taking into account different Reynolds numbers, and formation of the flow pattern, Strouhal number, vortex magnitude, and drag and lift coefficients for each pier shape were specified. Results for three different pier shapes showed that in Reynolds number of 200, the highest drag coefficient (1.82) and maximum flow velocity (1.55 m/s) was related to square pier. The lowest drag coefficient (0.46) was calculated for the rectangular pier (having a semi-circular edge on one side and a sharp-nose edge on the other side) when the flow collides with the semi-circular edge. The least drag and lift forces are exerted to the rectangular pier, as compared to other pier shapes. The lowest lift coefficient (0.012) was obtained for rectangular pier. On the other hand, position of sharp-nose edge in the wake region caused the vortex shedding to occur at a greater distance from the pier.
    Keywords: Bridge piers, abutments, Flow pattern, Drag, lift forces, Vortex shedding, Wake region, OpenFOAM
  • کاظم گمار، مسعود قدسیان*، سیدعلی ایوب زاده

    در این مقاله به بررسی آزمایشگاهی تشکیل و توسعه ی دلتا و تاثیر متقابل الگوی جریان و رسوب در مخزن تحت جریان دائمی و غیردائمی آب و رسوب پرداخته می شود. مشاهدات آزمایشگاهی نشان داد که علی رغم وجود تقارن کامل در هندسه و شرایط هیدرولیکی مدل، جریان در ورودی مخزن به صورت تصادفی به یکی از طرفین منحرف شده و یک جریان نامتقارن، اما پایدار در ورودی مخزن ایجاد می شود. ورود رسوبات و آغاز رسوب گذاری در مخزن، منجر به ناپایدار شدن جریان و تغییر جهت جریان خواهد شد. ناپایداری جریان در حالت غیردائمی بیشتر از جریان دائمی است. نتایج نشان داد که با توسعه ی دلتا، انحراف دلتا کاهش می یابد و به سمت تقارن پیش می رود. پیشروی دلتا به صورت تناوب توسعه ی طولی-عرضی بوده و حداکثر میزان کشیدگی دلتا در مراحل ابتدایی آن برابر 0/8 است که با توسعه ی دلتا از میزان آن کاسته می شود. رابطه ای برای محاسبه ی زمان تغییر جهت جریان بر حسب پارامتر مشخصه ی هیدروگراف استخراج شد. برای بررسی الگوی ته نشینی رسوبات پارمترهای بدون بعدی به نام طول پیشروی (Xt*)، نسبت انحراف (ψ) و کشیدگی دلتا (η) معرفی شدند و رابطه ای برای تخمین طول پیشروی دلتا با استفاده از پارامترهای بدون بعد موثر به دست آمد.

    کلید واژگان: الگوی جریان, دلتا, مخزن, جریان دائمی, جریان غیردائمی, رسوب گذاری
    Kazem Gomar, Masoud Ghodsian *, S. Ali Ayyoubzadeh

    In the present research, the formation and development of the delta and the interaction of the flow pattern and sediment in the reservoir under steady and unsteady flow condition of water and sediment is experimentally investigated. Laboratory observations showed that in spite of the perfect symmetry of the geometry and hydraulic conditions of the model, the flow at the reservoir entrance is randomly diverted to one side and an asymmetric but stable flow is created at the reservoir entrance. The sediment entry and its deposition in the reservoir leads to an unstable flow and a change in flow direction. The instability in unsteady flow is more severe than under steady flow condition. The results showed that with the growth of the delta, the deviation of delta decreases and approaches the symmetry. Delta development takes place in longitudinal and transvers directions and the maximum elongation of delta is about 0.8 at the initial stages, and decreases with delta development. An equation is developed for time of change in direction of flow in terms of the specific parameter of the hydrograph. In order to study the sedimentation pattern, non-dimensional parameters such as the length of delta (Xt*), deviation ratio (ψ) and delta elongation (η) are introduced. An equation is developed to estimate the length of delta using non-dimensional parameters.

    Keywords: Flow pattern, Delta, Reservoir, Steady flow, Unsteady flow, Sedimentation
  • مهدی حسینی، محمد واقفی *، مسعود قدسیان

    در نوشتار حاضر به بررسی الگوی جریان پیرامون آب شکن های سری سرسپری غیرمستغرق جاذب در مسیر مستقیم پرداخته و نتایج تحلیل الگوی جریان نشان داده است که استقرار آب شکن ها باعث جدایی جریان و در نتیجه افزایش سرعت های عرضی و عمقی در بالادست آن ها می شود و همچنین به دلیل تنگ شدگی ناشی از احداث آب شکن ها، سرعت های طولی در جلوی بال آب شکن ها تا ساحل مقابل افزایش می یابد. بیشینه ی سرعت های طولی در جلوی بال آب شکن اول حدودا 2 و 1٫6 برابر جلوی بال آب شکن های دوم و سوم است. بررسی پارامتر انرژی جنبشی آشفتگی در الگوی جریان نشان می دهد که در لبه ی بال بالادست آب شکن اول، بیشترین مقدار را دارد و در لایه ی برشی جلو بال آب شکن ها افزایش یافته است. بررسی تنش های رینولدز حاکی از آن است که بیشینه ی مولفه ی $-\o v e r l i n e{\r h o u''_{i}\n u''_i}$ به ترتیب حدودا 5 و 6 برابر مولفه های $-\o v e r l i n e{\r h o u''_{i}w_i^{''}}$ و $-\o v e r l i n e{\r h o \n u''_{i}w''_i}$ است و بیشینه ی مقادیر آن ها در پایین دست آب شکن ها و در جلوی بال رخ داده است.

    کلید واژگان: الگوی جریان, آب شکن های سری سرسپری, پارامترهای آشفتگی, تنش برشی بستر, مسیر مستقیم
    M.Hosseini, M. Vaghefi, M.Ghodsian

    Spur dikes are hydraulic structures that are used to protect river banks. In this paper, parameters influencing flow pattern around non-submerged attracting series of T- head spur dikes in straight channel are investigated. Evaluating of the flow pattern indicates that using spur dikes causes reversed flow and increasing the horizontal and vertical components of velocity at upstream of spur dikes. Longitudinal component of velocities at the front of the first spur dike wing is more than longitudinal velocities in the front of the second and third spur dike wing and in front of the second spur dike wing is more than third spur dike wing. The horizontal component of velocity are maximum the surface near to bed in reversed flow region and the negative transvers velocities of reversed flow are maximum near the free surface between spur dikes and in the front of the second and third spur dike wing. The deep positive velocities are seen in the edge of wing upstream of first spur dike and between spur dikes. Investigation of turbulence kinetic energy in flow pattern shows that it is maximum in the edge of wing upstream of first spur dike and has increased in wing of spur dike's shear layer. Investigation of Reynolds stresses in flow pattern shows that component $-{rho u_{i}^{'}}{nu_{i}^{'}}$ is maximum compared to two other components and the maximum value of that is occurred in the downstream and among of spur dikes. The maximum value of $-{rho u_{i}^{'}}{nu_{i}^{'}}$ component is respectively about 5 and 6 times the values of $-{rho u_{i}^{'}}{w_{i}^{'}}$ and $-{rho nu_{i}^{'}}{w_{i}^{'}}$ components. Component $-{rho u_{i}^{'}}{w_{i}^{'}}$is at minimum compared to two other components and component $-{rho nu_{i}^{'}}{w_{i}^{'}}$ at the edge of wing upstream of spur dikes and the minimum value of that occurs in the downstream and among of spur dikes. Investigation of bed shear stress shows that the maximum of bed shear has occurred at the edge of wing upstream of the first spur dike.

    Keywords: Flow Pattern, T-Head Series Spur Dikes, Turbulence Parameters, Bed Shear Stress, Straight Channel
  • احسان جباری *، حجت کرمی، مینا مولایی فرد
    در این تحقیق برای درک بهتر ساز و کار عملکرد حفره و تاثیر آن بر هیدرودینامیک جریان پیرامون پایه، مدلسازی عددی جریان اطراف پایه پل با مقطع دایرهای دارای حفره و بدون حفره، در شرایط بستر صلب صورت گرفته است. با استفاده از اطلاعات آزمایشگاهی در دسترس و به کمک مدل سه بعدیFlow3D ، در ارتفاع های مشخص در امتداد مسیر جریان و عمود بر آن در پایه حفره با مقطع دایره ایجاد شده و خصوصیات جریان اطراف پایه پل با حفره و بدون حفره مورد مقایسه قرار گرفت. نتایج نشان دادند که ایجاد حفره در پایه باعث گستردهتر شدن گردابه های ایجاد شده بعد از پایه شده و انتظار میرود عمق آبشستگی در اطراف پایه کاهش یابد. طبق نتایج حاصل این تحقیق، میتوان با ایجاد حفره میزان انرژی آشفتگی را 20% و تنش برشی بستر را 56% کاهش داد و با توجه به نتایج تنش برشی بستر و مقایسه آن با تنش برشی بحرانی پیشبینی می شود که میزان آبشستگی اطراف پایه پل در زمانی که حفره در پایه ایجاد شدهاست نسبت به زمانی که پایه بدون حفره است کاهش یابد. همچنین با ایجاد حفره جدایی جریان و تشکیل گرداب برگشتی کمتر دیده می شود و جریان چرخشی تشکیل شده در پایین دست پایه، کشیده تر شده و از حالت گردابی خارج می گردد.
    کلید واژگان: کاهش آبشستگی, الگوی جریان, حفره, مدل سازی عددی, Flow3D
    Ehsan Jabbari *, Hojjat Karami, Mina Molaiyfard
    The scour around the pier leads to bridge demolition. Therefore, the perception of the factors’ behavior affecting the scour and the capability to predict this phenomenon can offer important information to bridge designers. The development of a hole inside the pier is one the proposed solutions for reducing pier scour. In order to a better perception of the mechanism of hollow performance and its effect on the flow hydrodynamic around the pier, the numerical modeling of flow around the pier having a circular section with and without hollow is accomplished in rigid bed. The characteristics of the flow around the pier with and without the hollow are compared by the available laboratory information and using the 3 dimensional Flow3D model. The results showed that the development of hollow in pier leads to wider vortices after the pier and it is expected that the scour depth decreases around the pier. According to the results of this study, the turbulence energy and the bed shear stress can be reduced to 20% and 56%. Based on results of shear stress and comparing it with the critical shear stress, it is predicted that the amount of scouring around the pier when a hollow is developed can be reduced. Also, holes cause the less flow separation and returns flow after pier.
    Keywords: scour reduction, flow pattern, hollow, Numerical Modeling, Flow3D
  • علی آرمان، جواد ظهیری، پریا فتاحی، سارا قنبری
    پدیده فرسایش و رسوبگذاری در سواحل یکی از بالاترین خسارات وارده به رودخانه ها می باشد. در قوس رودخانه، نیروهای هیدرودینامیکی جریان های ثانویه را به وجود آورده و خطوط جریان سطحی را به سمت ساحل بیرونی و خطوط جریان نزدیک به بستر را به سمت ساحل داخلی منحرف می سازند. از این رو مطالعه جریان در کانال های خمیده و قوسی شکل از اهمیت ویژه ای برخوردار می باشد. در تحقیق حاضر با استفاده از مدل های دو بعدی CCHE2D و SRH-2D و نیز با هدف مقایسه دو مدل مذکور، به شبیه سازی جریان در قوس 90 درجه پرداخته شده است. به منظور صحت سنجی، نتایج مدل های عددی با نتایج آزمایشگاهی مقایسه گردید. نتایج حاصل از شبیه سازی الگوی جریان با نتایج حاصل از مدل ها،نشان دهنده قابلیت بالای هر دو مدل در شبیه سازی الگوی جریان در قوس می باشند. نتایج حاصل از شبیه سازی نشان داد که سرعت های محاسبه شده از مدل های عددی CCHE2D و SRH-2D نسبت به مقادیر آزمایشگاهی برداشت شده، به ترتیب دارای خطای 77/6 و 42/7 درصدی می باشند. همچنین متوسط مقادیر پارامتر های آماری MAE، RMSE وR2 در مدل CCHE2D به ترتیب برابر با 65/2، 22/3 و 93/0 و در نرم افزار SRH-2D برابر با 25/2، 90/2 و 95/0 می باشد.
    کلید واژگان: الگوی جریان, قوس 90 درجه, مدل عددی CCHE2D, مدل عددی SRH-2D
    Ali Arman, Javad Zahiri, Parya Fatahi, Sara Ghanbari
    Flow in river bends is three-dimensional, the combination of secondary flow and longitudinal flow in rivers leads to the formation of helical flow which is the main cause of erosion in the outer bend and sedimentation in the inner bend. So far, many numerical models regarding flow patterns in rivers have been introduced and available to river engineering scholars. Moges et al. (2010) simulated the hydraulic and sediment flow in Meander Rivers using SRH-2D two-dimensional model and eventually determined the best equation for predicting the water surface profile and bed level changes in sediment situations. Naji Abhari et al. (2010) studied the flow pattern in a 90 degree bend. The results of their study results showed that from the beginning of the bend till the 30 degrees angle the maximum velocity is close to the inner wall and from the 30 degree angle till the end of the bend the maximum velocity is diverted to the outer bend. Maghrebi (2012) studied the turbulent flow pattern in a longitudinal range of Karoon river, containing two 180 degree steep bends using MIKE21FM and CCHE2D models, the results showed that that both models simulate the flow pattern accurately. The aim of the present study is simulation of the flow pattern in a 90 degree mild bend using CCHE2D and SRH2D models.
    Keywords: Flow pattern, 90 degree mild bend, CCHE2D numerical model, SRH-2D numerical model
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال