fem
در نشریات گروه مکانیک-
This paper outlines the conceptual and numerical design process of a comminution equipment centered on particle breakdown through impact. The process is divided into four stages, starting with the generation of device concepts achieved by developing a needs matrix for an optimal machine. Subsequently, in the second stage, various equipment shape proposals were introduced and tested, with the selection of an optimal proposal determined through performance comparisons. For comparison purposes, simulations utilizing the discrete element method (DEM) were conducted, considering analyses of accumulated power from collisions and particle breakage. Once the optimized prototype was identified, a breakage simulation was conducted to measure the device's reduction ratio. In the third stage, the machine elements of the device were calculated. Finally, in the fourth stage, a series of simulations utilizing the finite element method (FEM) were carried out to perform structural and modal analyses of the final design. The evaluated variables identified in the simulations played a crucial role in optimizing the design, ultimately resulting in a device with a reduction ratio of 1:19.8 for limestone.Keywords: Comminution, Mining, Machine Design, DEM, FEM
-
This study presents a new exponential higher-order shear deformation theory (NEHSDT) to examine the flexural analysis of multi-layered laminated composite plates. The novel parabolic shear deformation function is developed to analyze the bending response of laminated plates. A new shear deformation theory eliminates the need for shear correction factors. The present theory gives an exact parabolic distribution of transverse shear stress over the thickness and fulfills the traction-free boundary conditions on the outer surfaces of multi-layered laminated plates. The governing equations are solved using the finite element method. In this finite element method, a nine-nodded isoperimetric element with seven degrees of freedom per node is formed especially for this purpose. Illustrative examples are presented to demonstrate the predictive capability of the proposed finite element method. The presented numerical results are compared with the existing results to illustrate the correctness and robustness of the finite element method. The proposed analysis is accurate, converges rapidly, and is valid for thin and thick laminated plates based on comparisons with earlier higher-order shear deformation theories. In addition, the present results may be taken as the benchmark for further studies.Keywords: HSDT, FEM, Laminated Plate, Stress Distribution, Deflection
-
Journal of Modern Processes in Manufacturing and Production, Volume:13 Issue: 3, Summer 2024, PP 5 -16
The forging process is a typical process to manufacture industrial parts that are subjected to fatigue stresses. The forged parts have equiaxial grains, and crack propagation occurs at a lower rate. A part's mechanical properties stem from its manufacturing process and initial materials. One of the applications of the forging process is manufacturing different kinds of metallic prostheses such as hip prostheses, which are very privileged in medical and rehabilitating issues. Hip prostheses undergo various types of stress, i.e., fatigue stress, indicating its significance in manufacturing. Cold forging is a promising method to produce high-strength parts with high fatigue life. Titanium alloys are widely used in prostheses due to their corrosion resistance. This study investigates the feasibility of manufacturing hip prostheses via cold forging. To analyze the behavior of materials during the forging process, the FEM simulation by ABAQUS software is applied. The press force is a significant factor in achieving the final geometry in which raw material fills the forging die within one stroke. In addition, the strength of the die is noticeable during the forging process.
Keywords: Cold Forging, FEM, ABAQUS Simulation, Hip Prosthesis, Titanium Alloy -
Journal of Modern Processes in Manufacturing and Production, Volume:13 Issue: 3, Summer 2024, PP 63 -81
Sheet metal forming is one of the main processes of forming thin-walled plates to produce the semi-final and final parts with high precision. In the present work, a complete investigation of the forming operation of the jack bracket of the Kia Rio car has been conducted with the help of the Design of Experiment (DOE) method, numerical simulations, and experimental investigations. First, the Finite Element (FE) method performed a numerical simulation of the process, and the results were compared with experimental results. Then, 13 proposed simulations were performed through the Box-Behnken experimental design method to study the effect of process parameters. The Friction Coefficient (FC), the press speed, and the Blank Holder Force (BHF) were chosen as input parameters. The maximum strain, the maximum stress of the part and the maximum punch force were considered output parameters. The results indicated that punch speed had the most significant effect on the plastic strain, with a contribution of 61.63%, and also FC had the most impact on the maximum force, with a contribution of 58.69%. Moreover, the role of BHF in the mentioned outputs was not considerable, but it was significant (31.47%) in the investigation of stresses.
Keywords: Stamping, FEM, DOE, Box-Behnken -
امروزه با پیشرفت علم رباتیک و فضای تعامل انسان و ربات، رویکردی با عنوان ربات نرم ارائه شده است که اصول کلاسیک طراحی و کنترل ربات را با مواد نرم و انعطاف پذیر ترکیب کرده است. در این مقاله یک روش نوین برای طراحی و مدلسازی یک عملگر بادی[1] برای استفاده در دستکش توانبخشی بر پایه رباتیک نرم پیشنهاد شده و برای تجزیه و تحلیل ساختار آن و پاسخ عملگر در فشار های مختلف از مدلسازی روش اجزای محدود استفاده شده است. در این تحقیق، تمرکز بر روش چاپ سه بعدی مستقیم برای ساخت یک عملگر نرم از جنس مواد پلی اورتان ترموپلاستیک است. یکی از چالش های مهم در مدلسازی اجزای محدود، انتخاب مدل رفتاری مناسب در مواد الاستومر است که بتواند وضعیت آن را در کرنش های مختلف شبیه سازی نماید. در مواد الاستومر به دلیل غیر خطی بودن رابطه بین تنش و کرنش، به جای قانون هوک از مدل های رفتاری هایپرالاستیک استفاده می شود. در این مقاله، براساس نتایج آزمایش کشش تک محوره ماده کالیبره شده و مورد ارزیابی قرار گرفته است. در شبیه سازی با ترکیب پارامترهای مختلف طراحی در ساختار اولیه، عملگر از نظر قابلیت خمشی بهبود یافته و تنش و کرنش در مواد کاهش یافته است. علاوه بر این، در حالت تجربی نشان داده می شود که مسیر حرکت عملگر در طول دامنه حرکت انگشت ها می باشد و دستکش توانبخشی می تواند به انگشتان آسیب دیده کمک کند.
کلید واژگان: ربات نرم، عضله مصنوعی، دستکش توانبخشی بادی، عملگر، پرینت سه بعدی، مدل اجزای محدود، تست تجربیToday, with the advancement of robotics science and the human-robot interaction space, an approach called soft robot has been presented, which combines the principles and controls of classic robot design with soft and flexible materials. In this article, a new method for designing and modeling a pneumatic actuator for use in rehabilitation gloves based on soft robotics is proposed, and finite element modeling (FEM) is used to analyze its structure and the response of the actuator under different pressures and choosing a suitable behavior model for elastomer materials that can simulate its status under different strains. As well as, the focus is on the direct 3D printing method to make a soft actuator from thermoplastic polyurethane materials. In elastomer materials, due to the non-linearity of the relationship between stress and strain, hyper elastic behavior models are used instead of Hooke's law. In this article, based on the uniaxial tensile test results, the material has been calibrated and evaluated. In the simulation by combining different design parameters in the primary structure, the actuator has been improved in terms of bending capability and the stress and strain in the material has been reduced. Further, the range of motion (ROM) of the robotic soft glove, which allows finger flexion with assistance.
Keywords: Soft Robot, Artificial Muscle, Pneumatic Rehabilitation Gloves, Actuator, 3Dprint, FEM, Experimental Test -
Journal of Modern Processes in Manufacturing and Production, Volume:13 Issue: 2, Spring 2024, PP 5 -30
Temperature prediction is essential for assessing the state of stresses, strains, and material flow during friction stir welding (FSW). In this context, the thermal and mechanical behavior of the AA6063-T5 aluminum alloy was simulated in FSW. This research utilized the Finite Element Method (FEM) for thermal and mechanical simulations, employing Abaqus/Explicit software. The first simulation focused on the thermal model, implemented through coding in FORTRAN using the Schmidt-Hotel reference model, which investigates the temperature distribution of the alloy. The second simulation was mechanical in nature; it utilized the output results from the thermal simulation to examine the stresses resulting from the FSW process. The samples were made of the same material and were butt-jointed for the operation. A tool speed of 60 mm/min, a force of 4000 newtons, and a coefficient of friction of 0.4 were applied during this process. The parameters for thermal conductivity, specific heat, coefficient of expansion, and Young's modulus were defined as temperature-dependent. The results indicated that the temperature distribution diagram at a specific point along the welding path closely matched practical examples of the FSW process. The temperature distribution contours at the beginning, middle, and end of the welding path, as well as the temperature distribution across the cross-sectional surface of the weld in the middle of the piece, were consistent with the samples. Additionally, the diagram and contour of the longitudinal residual stress in the workpiece aligned well with the completed samples.
Keywords: Simulation, Thermal -Mechanical Analysis, AA6063-T5, FSW, FEM -
Pipeline systems under thermal loads are frequently used in different industries, such as the power plants and petrochemicals. Unlike the analytical method of elastic center, which is capable to analyze only one branch of pipeline with pipe members parallel to the coordinate system, the method of stiffness removes these limitations. In this article the stiffness method is introduced for the analysis of pipeline systems. Based on this method, the piping system may include any number of piping braches. The straight pipe elements in the branch may have any general orientation and the bend elements may have any arbitrary angle. The computer program designed based on this method may compute the nodal displacements at the ends of the straight or bend elements and present three components for loads and three components for moments. Once the free-body diagram of each piping elements with nodal forces and moments are drawn, then the engineering codes are employed to design the piping system for safe operation.Keywords: Pipeline Analysis, Stiffness Method, Finite Element Method, FEM, Thermal Loads
-
In this paper, we employ the finite element method based on non-uniform rational B-splines function approximation to solve the nonlinear Brinkman-Forcheimer-Darcy equation in a simply connected and bounded Lipschitz domain Ω. We provide both theoretical and numerical studies of the Dirichlet boundary problem. Utilizing a stream function formulation, we demonstrate the well-posedness of the weak form. Furthermore, we approximate the velocity and pressure fields by linearizing the nonlinear terms, resulting in an algebraic system. This Non-uniform rational B-splines method is more effective in terms of the exact representation of the geometry and the good approximation of the solution compared to the virtual element method. To validate the effectiveness of the non-uniform rational B-splines Finite Element Method, we conduct numerical simulations of fluid flow in porous media.Keywords: Brinkman-Forchheimer-Darcy, NURBS, FEM, Porous, MATLAB, Stream Formulation, Isogeometric Analysis
-
برای ثابت کردن شکستگی گردن استخوان ران با استفاده از پیچ، نظرهای متفاوتی بین جراحان ارتوپد در مورد چیدمان پیچ ها وجود دارد. همچنین پارامترهای سوراخ کاری استخوان از جمله زاویه راس مته و سرعت دورانی مته نیز می تواند در استحکام ثابت سازی تاثیر داشته باشد. در این تحقیق، به صورت تجربی و به کمک شبیه سازی تاثیر سه نوع چیدمان مثلث، مثلث معکوس و خطی و پارامترهای سرعت دورانی و زاویه راس مته بر استحکام ثابت سازی شکستگی گردن استخوان ران برای نخستین بار بررسی شده است. در آزمایش های تجربی، بیشترین نیروی تحمل شده برای چیدمان مثلث معکوس و نسبت به چیدمان های مثلث و خطی به ترتیب 25% و 37% بیشتر است. سرعت دورانی مته 2000 دور بر دقیقه نسبت به 1000 دور بر دقیقه و زاویه راس مته °60 نسبت به °118 به ترتیب به طور میانگین 11 و 7/5 درصد استحکام اتصال را افزایش داده اند. آنالیز واریانس نشان داد که میزان تاثیر نوع چیدمان پیچ ها، سرعت دورانی مته و زاویه راس مته بر استحکام ثابت سازی به ترتیب 83/26، 6/98 و 3/24 درصد است. نتایج به دست آمده از شبیه سازی عددی نشان داد که چیدمان مناسب، مثلث معکوس با پارامترهای سوراخ کاری سرعت دورانی مته 2000 دور بر دقیقه و زاویه راس مته °60 است که 4782 نیوتون نیرو را تحمل کرده است.
کلید واژگان: استحکام ثابت سازی، شکستگی گردن استخوان ران، سرعت دورانی، زاویه راس مته، شبیه سازی المان محدودTo fix the femoral neck fracture using screws, there are different opinions among orthopedic surgeons about screw placement. Also, the parameters of bone drilling, including the angle of the drill tip and the rotational speed of the drill, can also have an effect on the fixation strength. In this research, experimentally and with the help of simulation, the effect of three types of arrangement including triangle, inverted triangle and linear, and parameters of rotational speed and angle of the drill tip on the strength of femoral neck fracture fixation has been investigated for the first time. In experimental tests, the maximum force tolerated by for the inverted triangle arrangement is 25% and 37% higher than the triangle and linear arrangements, respectively. The rotational speed of the drill 2000 rpm compared to 1000 rpm and the tip angle of the drill 60° compared to 118° have increased the connection strength by 11 and 7.5 percent, respectively. The analysis of variance showed that the effect of the type of screw arrangement, respectively. the rotational speed of the drill and the angle of the drill tip on the fixation strength is 83.26, 6.98 and 3.24%, respectively. The results obtained from the numerical simulation showed that the proper arrangement is the inverted triangle with the drilling parameters of the rotational speed of the 2000 rpm and the tip angle of the 60°, which has endured N4782 force.
Keywords: Fracture Fixation, Femoral Neck Fracture, Rotational Speed, Drill Tip Angle, FEM -
Journal of Modern Processes in Manufacturing and Production, Volume:13 Issue: 1, Winter 2024, PP 69 -84
This study aimed to investigate the influence of rotational and traverse speeds on the friction stir welding (FSW) of aerospace-grade aluminum alloys. To achieve this, a thermo-mechanically coupled 3D finite element analysis (FEM) was employed to analyze the impact of these speeds on temperature and strain. Additionally, tensile tests were conducted on welded joints fabricated using varying tool rotational and traverse speeds to examine the effects of welding speed on the tensile properties of the specimens. The results revealed that high welding speeds had a detrimental effect on the mechanical properties of the weld samples. Samples produced using an optimal rotational speed of 1200 rpm and a traverse speed of 40 mm exhibited a tensile strength of 346 MPa, which accounts for approximately 64% of the strength seen in the base material.
Keywords: FSW, Rotational Speed, Traverse Speed, Tensile, FEM -
در تحقیق حاضر، روش اکستروژن متناوبی فشاری پروفیل سبک غیرمتقارن (NCTS-CEC) به عنوان روشی جدید جهت تغییر شکل پلاستیک شدید تیرهای با مقطع غیر متقارن مورد مطالعه قرار گرفته است. در این روش کل طول تیر غیر متقارن با پروفیل L شکل از یک قالب گلویی عبور کرده و تحت تاثیر تغییر شکل پلاستیک شدید قرار می گیرد. با انجام پاس های بیشتر فرایندی می توان کرنش پلاستیک تجمعی دلخواه با مقادیر بالاتر را به ماده اعمال نمود. در بخش اول مطالعات تجربی، نمونه های پروفیلی با مقطع L از جنس منیزیم AM60 آماده سازی شده و در مجموعه قالب قرار گرفت و توسط سنبه ای در سیکل های مختلف تحت تاثیر تغییر شکل پلاستیک قرار گرفت. تحول ریز ساختاری نمونه های تغییر شکل یافته توسط میکروسکوپ نوری و الکترونی عبوری نشان داد که بیشترین تغییرات اندازه دانه در انتهای فرایند و پس از اعمال دو پاس از مقدار اولیه 75 میکرون به مقدار 5 میکرون اتفاق افتاد. در ادامه، بررسی های خصوصیات مکانیکی و میکرو سختی سنجی بر روی نمونه های اولیه و تغییر شکل یافته حاکی از افزایش استحکام تسلیم و حداکثر از مقادیر اولیه به ترتیب 5/89 و 3/227 به 9/136 و 7/286 مگاپاسکال و همچنین افزایش میکرو سختی ویکرز از مقدار اولیه 54 به مقدار 89 ویکرز می باشد. از طرف دیگر مقدار انعطاف پذیری نمونه های تغییر شکل یافته به دلیل تحول ریزساختاری و خرد شدن فازهای یوتکتیک و کاهش اندازه دانه از 3/11% به 4/14% افزایش یافته است. روش شبیه سازی عددی اتومات سلولی جهت پیش بینی تحول ریز ساختاری نمونه های تغییر شکل یافته به کار گرفته شد. نتایج به دست آمده حاکی از مطابقت قابل قبول روش شبیه سازی و آزمایشات تجربی دارد.کلید واژگان: اکستروژن متناوبی فشاری، منیزیم AM60، شبیه سازی اجزای محدود، اتومات سلولیIn this study a new severe plastic deformation method named noncircular thin section cyclic extrusion–compression (NCTS-CEC) is proposed for processing ultrafine-grained noncircular thin section beams. In this technique, the total length of noncircular L shaped section is passed through a neck zone and experiences severe plastic strains. Therefore, the high amount of accumulated plastic strain could be imposed by repeating the number of process cycles. In the first section of study, the AM60 Magnesium alloy is inserted into die and deformed by punch in different cycles. The observations by optical and SEM microscopes showed the formation of about 5 μm fine grains from the initial value of 75 μm after processing by two cycles of the NCTS-CEC. Also, the mechanical properties including yield strength, UTS, elongation and microhardness are evaluated at different cycles of NCTS-CEC processing. The obtained results showed the increase of yield strength and UTS to 136.9MPa and 286.7 MPa from the initial values of 89.5 MPa and 227.3 MPa, respectively. The Vickers microhardness is increased to 89HV from the initial value of 54HV at the end of second cycle. Also, the elongation of processed sample is increased to 14.4% from 11.3% due to texture evolution, grain refinement and breakage of brittle eutectic phases at the end of second cycle. The cellular automaton (CA) finite element method was implemented to simulate the process to predict the microstructure evolution of AM60. The obtained results from cellular automaton finite element (CAFE) and experimental methods were in good agreement.Keywords: Cyclic extrusion, compression, AM60 magnesium alloy, FEM, Cellular Automaton (CA)
-
استفاده از مدل های تجربی و شبه تجربی برای مدل کردن خواص نانوکامپوزیت ها به منظور پیش بینی خواص مکانیکی و شکست آن ها می تواند به کاهش هزینه و زمان و طراحی بهینه آن ها منجر شود. </strong>در این پژوهش به منظور مدل کردن خواص مکانیکی و رفتار شکست نانوکامپوزیت پلیمری تقویت شده با نانولوله های کربنی در درصدهای حجمی 5/0 درصد، 75/0 درصد و 1 درصد از مدل الیاف ناپیوسته (کوتاه) استفاده شده است. مدل الیاف ناپیوسته در پژوهش های پیشین برای مدل کردن خواص کامپوزیت ها با الیاف تقویت کننده ناپیوسته در مقیاس ماکرو مورد استفاده قرار گرفته است که با توجه به هندسه استوانه ای شکل نانولوله ها، از این روش در کار حاضر استفاده شده است، همچنین با استفاده از این مدل و نیز مدل توزیع تصادفی نانولوله ها در ماتریس اپوکسی شبیه سازی اجزای محدود خواص مکانیکی و رفتار شکست در مقیاس نانو و مزو با بهره گیری از برنامه نویسی زبان پایتون انجام گرفته است.
کلید واژگان: مدل الیاف ناپیوسته، رفتار شکست، نانوکامپوزیت پلیمری، نانولوله های کربنی، روش اجزای محدودThe use of empirical and semi-empirical models to model the properties of nano composites to predict mechanical properties and failure leads to cost and time reduction and optimal design. In this study, discontinuous (short) fiber models were used to model the mechanical properties and fracture behavior of carbon nanotube reinforced polymer nanocomposites with volume fractions of 0.5%, 0.75%, and 1%. In previous studies, the discontinuous fiber model was used to determine the macro scale properties of composites reinforced with discontinuous fibers. In this study, a model that considers the geometric similarity between short fibers and nanotubes was used. Using this model and the model of random distribution of nanotubes in the epoxy matrix, simulations were performed using the Python programming language and the mechanical properties and fracture behavior were investigated at the Nano and mesoscales.
Keywords: Discontinuous fiber model, Fracture behavior, Polymeric nanocomposite, Carbon nanotube, FEM -
Nowadays, the use of bimetallic laminates with special capabilities and features is increasing and has experienced high growth. These properties include high mechanical properties, corrosion resistance, light weight, resistance to noted good abrasion and thermal stability. In the midst of the technologies of multilayer composite materials Accumulative Press Bonding (APB) is one of the most common techniques for the production of multilayer composites. One of the most important aims for this choice is the press pressure, which can create a strong and suitable mechanical connection between Produced metal layer components. In this study, the Accumulative Press Bonding method has been used to produce aluminum and copper composites and the process modeling has been done by ABAQUS finite element analysis software. In this paper, the effect of Press parameters such as strain and number of layers on the distribution stress of forming this type of composites has been investigated. Shear stress among the layers reached to about 4MPa for samples with eight layers which is a good condition to generation a successful bonding. With increasing thickness, the stress applied on the layers has also increased. Maximum stress also increases significantly. As the thickness decreases, the interlayer shear stresses also increase. With increasing percentage of thickness decrease, the amount of sinking of the layers in each other has greater than before, which has led to the crushing of copper layers along the entire length of the sample. During the process, as the number of passes increases, the volume of virgin material in the direction of the press rises, which leads to increased compaction and better adhesion of the layers to each other.Keywords: Metal matrix composite, Accumulative press bonding, FEM
-
In this article, free and forced vibration analyses of 3D printed FG sandwich beam based on higher order beam theory is investigated. The core and face sheets of sandwich beam are integrally fabricated by 3D printer. Therefore, ignoring the delamination between face sheets and core is a correct assumption. Three different cells are considered for the core including Re- entrant auxetic cell, anti-tetrachiral auxetic cell and conventional honeycomb cell. These cells are arranged along the thickness of structure based on cell thickness in four various patterns. The effective mechanical properties of cells are estimated by analytical relations. Finite element methods and Lagrange equations are employed for obtaining the effective stiffness and mass matrices of the sandwich beam. Finally, the influences of various parameters including various types of cells, various patterns of cell along the thickness of structure, thickness coefficient, the geometry of cells such as the interior angle and dimensions of cells on natural frequencies and transient deflection of structure have been studied. The results denote that the arrangement of cells along the thickness plays an important role on the vibration response of structure. On the other hand, for uniform thickness distribution of cells, Re –entrant auxetic cell has higher natural frequencies than other cells while in FG arrangements of cells, anti-tetrachiral cell with pattern A has higher natural frequencies than Re-entrant auxetic cell.Keywords: Free Vibration, Forced vibration, FG graded auxetic cell, FEM, beam, higher-order beam theory
-
In this article, shear buckling analysis of functionally graded porous annular sector plate reinforced with graphene nanoplatelets (GPLs) are investigated for the first time. The plate is consisting of a layered model with uniform or non-uniform dispersion of graphene platelets in a metallic matrix including open-cell interior pores. The extended rule of mixture and the modified Halpin-Tsai models and are employed to obtain the effective mechanical properties of the porous nanocomposite plate. Three different porosity distributions in conjunction with five patterns for dispersion of GPL nanofiller are considered through the thickness of plate. Governing equations derived according to the principle of minimum total potential energy based on 3D elasticity theory and generalized geometric stiffness concept. Finally, finite element method is applied for solving the governing equations of structure. The influence of different parameters including various porosity distribution, porosity coefficient, patterns of GPL dispersion, weight fraction of GPL nanofiller, boundary conditions and sector angles on shear buckling loads of the annular sector plate has been surveyed.
Keywords: Shear buckling, 3D elasticity theory, Annular sector plate, FEM, FG porous material, GPLs -
An analysis is carried out on the natural or free convective magnetohydrodynamic flow of a non-Newtonian Jeffrey fluid with a Hall current, heat source, and variable suction near vertical plate.Using a flexible, widely validated variable finite element method, the governing nonlinear partial differential equations be transformed into linear partial differential equations using similarity variables, and this equations along with the associated boundary conditions be then solved numerically.The fluctuation of important parameters in the thermal and hydrodynamic boundary layers be thoroughly examined, and the findings are displayed visually. Additionally, a comparison study is offered to reduce verification and arrive at a excellent consensus. This model is beneficial for geothermal reservoirs, subterranean power transmission, MHD pumps, accelerators, and flow metres, as well as industrial heat management, geological flows within mud cover, etc.
Keywords: Hall Current, Heat Source, MHD, Jeffrey Fluid, FEM -
In this research article is investigated by experimental and analytical (FE modeling with ANSYS) for T welded joints under tensile test. The SEM and EDS methods were applied for failure surface of welded joint. 3D model of welded joint was developed by using ANSYS software and simulated. The deformation of welded joint model in ANSYS was validated by using performing experiment. The fractography study is carried out with the help of scanning electronic microscope (SEM) method. It is observed the brittle and ductile fracture surface at heat affected zone. The chemical composition was found using DSE method, the experimental outcomes represented that the T-joint is much stronger than the corner joint. ANSYS results are much closed to the experimental results. FE model is created by using SOLID187 elements. The stress sanguinity at junction of T-welded joint was studied. Stress singularity decreased with increasing load The systematical examine failure surface of welded joint by using SEM method T-type of welded joint is very stronger that other joint as, Butt, Lap and Corner joint. Failure load of present model is 30KN is suggested by designing the military aircraft structure.Keywords: FEM, Experimental analysis, SEM, EDS, stress singularity. Welded joint for aircraft structure
-
This research studied different tools with different cone angles to produce brass wires using the friction stir back extrusion (FSBE) method. The cone angle of the tool is one of the most influential parameters in the production of brass wires. First, to determine the appropriate cone angle, the FSBE process is modeled using the Coupled Eulerian-Lagrangian (CEL) method. The simulation results showed that increasing the cone angle increases the heat generated and reduces the force on the tool. Also, to be more precise, the mechanism of heat production during the process was numerically modeled to verify the simulation results. The cross-sectional images of the wires produced showed that only tools with a cone angle of 35 ° could produce flawless wires. The microstructural results showed that the grain size in the center of the wire was 20.24 microns, which is larger than the size in the wire periphery, which was 16.88 microns. This microstructural deviation is mainly affected by the strain and the temperature.
Keywords: FSBE, Recycling, Microstructure, FEM, Cone angle -
این پژوهش به بررسی ارتعاشات پوسته های استوانه ای چند لایه الیاف-فلزی آلومینیوم با لایه های تعبیه شده پیزوالکتریک که دارای اندرکنش سیال-سازه است بر اساس تیوری الاستیسیته سه بعدی می پردازد. با استفاده از رویکرد فضای حالت معادلات حرکت برای شرایط مرزی تکیه گاهی ساده بدست آمدند. فرکانس های طبیعی پوسته استوانه چند لایه فیبر فلز شامل سیال محرک با حل معادله فرکانس ویژه حاصل شدند. اثر پارامترهای مختلف مثل طول به شعاع، سرعت سیال، عدد موج محیطی و شعاع به ضخامت برای آلومینیوم تقویت شده با الیاف کربن مورد بررسی قرار گرفت. نسبت حجمی کامپوزیت/فلز ثابت در نظر گرفته شد. تاکنون پژوهشی بروی پوسته های استوانه ای چند لایه الیاف-فلزی آلومینیوم با لایه های تعبیه شده پیزوالکتریک که دارای اندرکنش سیال-سازه انجام نشده است . موضوع بسیار جدیدی است. مطابقت و همگرایی نتایج پژوهش حاضر با مقایسه نتایج فرکانس های طبیعی گزارش شده در ادبیات تایید گردید و بیانگردقت بالای نتایج حاصل از این پژوهش می باشد.کلید واژگان: ارتعاشات آزاد، پوسته استوانه ای، فیبر فلز لمینیت، تئوری الاستیسیته، _ روش اجزاء محدودThis research examines the vibrations of multi-layer aluminum-metal fiber cylindrical shells with embedded piezoelectric layers that have fluid-structure interaction based on the three-dimensional elasticity theory. Using the state space approach, the equations of motion for simple support boundary conditions were obtained. The natural frequencies of the multi-layer metal fiber cylindrical shell containing the driving fluid were obtained by solving the special frequency equation. The effect of different parameters such as length to radius, fluid velocity, ambient wave number and radius to thickness was investigated for aluminum reinforced with carbon fibers. The volume ratio of composite/metal was considered constant. So far, no research has been done on multi-layered aluminum fiber-metal cylindrical shells with embedded piezoelectric layers that have fluid-structure interaction. It is a very new topic. The consistency and convergence of the results of this research was confirmed by comparing the results of natural frequencies reported in the literature, and the high accuracy of the results of this research is expressed.Keywords: Vibration, _ Cylindrical Shell, _ Fiber- Metal Laminate, _ Elasticity Theory, _ FEM
-
در تولید قطعات دوفلزی با استفاده از فرایند آهنگری، می توان قطعات با نسبت استحکام به وزن بالاتر را به دست آورد. هدف از این پژوهش آهنگری قطعه دوفلزی است بطوریکه برای بخش داخلی از آلیاژ آلومینیوم و بخش بیرونی از آلیاژ برنج استفاده شده است. دمای آهنگری برای آلیاژهای برنج و آلومینیوم در محدوده کار داغ به ترتیب برابر 700 و 450 درجه سانتیگراد در نظر گرفته شده است. ابتدا آهنگری قطعه تک فلزی بصورت عددی و تجربی بررسی می شود. پس از صحت سنجی مدل المان محدود، به آهنگری قطعات دوفلزی در یک مرحله پرداخته می شود. تاثیر ضخامت پوسته برنجی و نیز اختلاف ارتفاع هسته آلومینیومی و پوسته برنجی بر موفقیت آمیز بودن فرایند آهنگری داغ تک مرحله ای مطالعه می گردد. نتایج نشان می دهد که ضخامت و ارتفاع پوسته برنجی تاثیر چشمگیری بر موفقیت آمیز بودن فرایند بر پوشش دهی کامل هسته توسط پوسته ندارد. در ادامه برای حل این مشکل، هندسه های غیرساده برای هسته و پوسته به عنوان پیش فرم، طراحی و آهنگری مرحله دوم بصورت عددی بررسی می شود. نتایج نشان می دهد که جهت تولید قطعه دوفلزی با پوشش کامل هسته آلومینیومی توسط پوسته برنجی به دو مرحله آهنگری توسط یک پیش فرم مناسب غیرساده نیاز است. در نهایت پیش فرم تاییدشده توسط مدل المان محدود، بصورت تجربی تولید و آهنگری داغ بر روی آن انجام می شود. نتایج تجربی تاییدکننده نتایج عددی می باشند. با استفاده از تصاویر SEM نشان داده می شود که اتصال متالورژیکی مناسبی نیز در مرز دو فلز ایجاد می گردد.
کلید واژگان: آهنگری داغ، دوفلزی، شبیه سازی اجزای محدود، SEMIn forging of bimetallic components, products with a high strength to weight ratio can be obtained. The purpose of this research is to forge a bimetallic component made from aluminum and brass alloys as the inner and outer parts, respectively. The forging temperature for the brass and aluminum alloys is considered in the hot work range as 700 °C and 450 °C, respectively. First, the forging of a single component is investigated numerically and experimentally. After validating the finite element model, bimetallic components are forged in single stage. The effect of brass ring thickness and height difference between aluminum core and brass ring is studied on the success of the single-stage hot forging process. The results show that the thickness and height of the brass ring do not have a significant effect on the success of the process in terms of complete covering of the core by the ring. In the following, to solve this problem, non-simple geometries are designed for the core and ring as a preform, then forging of the second stage are numerically investigated. The results show that in order to produce a bimetallic component with a complete covering of the aluminum core by a brass ring, a two-stage forging is needed using a suitable non-simple preform. Finally, the preform approved by the FEM is experimentally produced and hot forging is performed on it. The experimental results confirm the numerical results. SEM images show that an appropriate metallurgical bonding is created at the interface of two metals.
Keywords: Hot forging, Bimetal, FEM, SEM
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.