A numerical simulation of accumulative press bonding process of laminated MMCs

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Nowadays, the use of bimetallic laminates with special capabilities and features is increasing and has experienced high growth. These properties include high mechanical properties, corrosion resistance, light weight, resistance to noted good abrasion and thermal stability. In the midst of the technologies of multilayer composite materials Accumulative Press Bonding (APB) is one of the most common techniques for the production of multilayer composites. One of the most important aims for this choice is the press pressure, which can create a strong and suitable mechanical connection between Produced metal layer components. In this study, the Accumulative Press Bonding method has been used to produce aluminum and copper composites and the process modeling has been done by ABAQUS finite element analysis software. In this paper, the effect of Press parameters such as strain and number of layers on the distribution stress of forming this type of composites has been investigated. Shear stress among the layers reached to about 4MPa for samples with eight layers which is a good condition to generation a successful bonding.  With increasing thickness, the stress applied on the layers has also increased. Maximum stress also increases significantly. As the thickness decreases, the interlayer shear stresses also increase. With increasing percentage of thickness decrease, the amount of sinking of the layers in each other has greater than before, which has led to the crushing of copper layers along the entire length of the sample. During the process, as the number of passes increases, the volume of virgin material in the direction of the press rises, which leads to increased compaction and better adhesion of the layers to each other.
Language:
English
Published:
Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering, Volume:15 Issue: 3, Sep 2023
Pages:
27 to 36
https://magiran.com/p2677207