جستجوی مقالات مرتبط با کلیدواژه "چروکیدگی چگالی" در نشریات گروه "مکانیزاسیون کشاورزی"
تکرار جستجوی کلیدواژه «چروکیدگی چگالی» در نشریات گروه «کشاورزی»-
در این پژوهش بررسی سینتیک خشک شدن چیپس سیب زمینی و مدل سازی آن در یک خشک کن مایکروویو با سامانه ثبت تصویر به صورت بلادرنگ و اعمال سطوح توان متغیر در طی فرآیند خشک کردن انجام گرفت. در خشک کن مورد نظر دو سری آزمایش انجام گرفت، سری اول با سه سطح چگالی توان 67/2، 4 و 8 W g-1 با دو حالت چگالی توان ثابت و متغیر برای بررسی و مدل سازی سینتیک تغییرات محتوای رطوبتی و سری دوم با دو سطح 3 و 5 W g-1 برای ارزیابی مدل های ساخته شده استفاده شد. همچنین چروکیدگی محصول به کمک الگوریتم پردازش تصویر توسعه داده شده اندازه گیری شد. دو مدل شبکه عصبی، اولی با ورودی های زمان و چگالی توان و دومی با ورودی های نسبت چروکیدگی و چگالی توان برای مدل سازی و پیش بینی تغییرات محتوای رطوبتی توسعه داده شدند. نتایج ارزیابی مدل ها نشان داد که مدل دوم با همبستگی 994/0 و خطای 067/0 نسبت به مدل اول با همبستگی 961/0 و خطای 173/0 دارای قابلیت اعتماد و اطمینان بیشتری برای پیش بینی تغییرات محتوای رطوبتی می باشد.
کلید واژگان: چروکیدگی چگالی, توان مایکروویو, سینتیک محتوای رطوبتیIntroductionMicrowave drying compared to conventional hot air drying has many benefits to apply in food drying processes such as volumetric heating, high thermal efficiency, shorter drying time and improved product quality. In conventional microwave drying method, a fixed microwave power was used during the drying process. However, the water of the product evaporated and mass of product decreased over the time that resulted in microwave power density (MPD) increasing during the drying process. Increasing the power density, especially at the end of the process, sharply increased the product temperature. High temperature of products led to the deterioration of the product quality. Most research used variable microwave power program for preventing the risk of overheating and charring of product. The evaporation of the water causes the shrinkage of product. Therefore, many studies have used machine vision for measuring the shrinkage and this technology has been used in modeling and predicting the MC.
Materials and MethodsThe fresh potato samples (Solanum tuberosum cv. Santana) with 83% (w.b.) of initial MC were sliced into the chips of 5mm thickness. The developed drying systems consisted of microwave oven, lighting unit and imaging unit, temperature sensor, microwave power adjusting unit and a data acquisition unit (DAQ). A LabVIEW (V17.6, 2017) program was developed to integrate all measurements and adjusting the microwave power during the drying process. In this study, two sets of experiment with different aims have done. The first set of experiments was used for calculating the shrinkage by developed image processing algorithm and MC by offline mass measurement and then data sets were used to investigate the artificial neural networks (ANNs). The second set was used for evaluating the reliability of investigating models. The experiments, in the first set, were done with 8, 4 and 2.67 W g-1. In the variable mode, the power varied in two/three steps with respect to the MC of samples during the drying process. Second set of experiments was done in two variable and constant power modes with 5 and 3 W g-1. An image processing algorithm was developed to measure the shrinkage of potato slice during the drying process. In this study the feed forward ANN with back propagation algorithm was used. Two structures of ANN were used for modeling of MC. In the first model time and power density and the second model shrinkage and power density were used as input. Also moisture ratio was used as an output parameter in two models.
Results and DiscussionThe obtained results indicated that for the first model the ANN with 2-3-1 structure had better results than others structures. This structure had 0.0713, 0.0337 and 0.0640 of RMSE and 0.9764, 0.9973 and 0.9800 of R for train, validation and test, respectively. For the second model, the 2-2-2-1 structure of ANN with 0.0780, 0.0816 and 0.0908 of RMSE and 0.9598, 0.9799 and 0.9746 of R for train, validation and test, respectively had better results than other structures. The evaluation of these models with a second data set showed that the second model with shrinkage and power density as input with 0.067 of RMSE and 0.994 of R had better results than the first model with 0.173 of RMSE and 0.961 of R. These consequences expressed that the second model had higher reliability for prediction of MC based on shrinkage and power density during drying process.
ConclusionsIn this study, a microwave dryer was developed with a real-time image recording system and a microwave power level program during the drying process. Two ANN models were used for modeling of drying kinetics of the potato slices. Also image processing algorithm was investigated by measuring the shrinkage of potato slice during the drying process. The outcomes revealed that shrinkage as input in the ANN had great effect on MC prediction during the drying process.
Keywords: Microwave power density, Moisture content kinetic, Shrinkage
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.