به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "visible machine vision" در نشریات گروه "مکانیزاسیون کشاورزی"

تکرار جستجوی کلیدواژه «visible machine vision» در نشریات گروه «کشاورزی»
جستجوی visible machine vision در مقالات مجلات علمی
  • عادل بخشی پور زیارتگاهی، عبدالعباس جعفری، یحیی امام، سید مهدی نصیری، سعادت کامگار، داریوش زارع
    از بین بردن علف های هرز توسط یک دستگاه خودکار نیازمند یک سامانه ماشین بینایی است که قادر به تشخیص گیاه اصلی از علف هرز باشد. بدین منظور می بایست ابتدا ویژگی های متمایز بین گیاه اصلی و علف های هرز مشخص شوند. در این تحقیق با مطالعه عکس های متعدد چغندرقند وجود یک ویژگی مختص برگ چغندرقند و قابل تمایز با علف های هرز مرسوم مشخص گردید. این ویژگی یک انحنای S شکل در ابتدای برگ و در نزدیکی دمبرگ بود که تنها در برگ های چغندرقند قابل مشاهده بوده و در سایر علف های هرز مرسوم وجود نداشت. برای بیان این ویژگی از تبدیل تعمیم یافته هاف استفاده شد تا به کمک آن مکان هندسی اشکال غیر هندسی تعریف شود. بررسی نتایج حاصل از انجام این روش بر روی تصاویر جمع آوری شده از شرایط واقعی مزرعه نشان داد که دقت کلی الگوریتم %65/91 می باشد. %92 از بوته های چغندرقند موجود در تصاویر آزمون به درستی و %7/8 از علف های هرز به اشتباه به عنوان چغندرقند تشخیص داده شدند. با توجه به این که این روش تنها از یک ویژگی شکلی استفاده می نماید، می توان انتظار داشت که با افزودن سایر ویژگی های بافتی و رنگی به قدرت تشخیص درست بالایی دست یافت.
    کلید واژگان: پردازش شکلی, چغندرقند, علف هرز, ماشین بینایی مرئی, هاف تعمیم یافته
    A. Bakhshipour Ziaratgahi, A. A. Jafari, Y. Emam, S. M. Nassiri, S. Kamgar, D. Zare
    Introduction
    Sugar beet (Beta vulgaris L.) as the second most important world’s sugar source after sugarcane is one of the major industrial crops. The presence of weeds in sugar beet fields, especially at early growth stages, results in a substantial decrease in the crop yield. It is very important to efficiently eliminate weeds at early growing stages. The first step of precision weed control is accurate detection of weeds location in the field. This operation can be performed by machine vision techniques.
    Hough transform is one of the shape feature extraction methods for object tracking in image processing which is basically used to identify lines or other geometrical shapes in an image. Generalized Hough transform (GHT) is a modified version of the Hough transform used not only for geometrical forms, but also for detecting any arbitrary shape. This method is based on a pattern matching principle that uses a set of vectors of feature points (usually object edge points) to a reference point to construct a pattern. By comparing this pattern with a set pattern, the desired shape is detected. The aim of this study was to identify the sugar beet plant from some common weeds in a field using the GHT.
    Materials And Methods
    Images required for this study were taken at the four-leaf stage of sugar beet as the beginning of the critical period of weed control. A shelter was used to avoid direct sunlight and prevent leaf shadows on each other. The obtained images were then introduced to the Image Processing Toolbox of MATLAB programming software for further processing.
    Green and Red color components were extracted from primary RGB images. In the first step, binary images were obtained by applying the optimal threshold on the G-R images.
    A comprehensive study of several sugar beet images revealed that there is a unique feature in sugar beet leaves which makes them differentiable from the weeds. The feature observed in all sugar beet plants at the four-leaf stage was a stretched S-shaped curve at the junction of the leaf and petiole. This unique shape characteristic was used as the pattern for sugar beet detection using GHT. To implement the Hough transform in the images, a 50-member group of samples was prepared from S-shaped curve to build appropriate patterns. Desired features for the Hough transformation were extracted from the patterns. In the next step, the attempts were made to find the images for the shapes similar to each of the patterns.
    Results And Discussion
    Plants were thoroughly separated from soil and residues. The accuracy of segmentation algorithm was achieved by almost 100%.
    The accuracy of the generalized Hough algorithm was evaluated in two stages. In the first stage, the algorithm accuracy was assessed in detecting patterns in the images. Results showed that the accuracy of the algorithm was 96.21%. In the second stage, the algorithm was evaluated for some other test images, whereas the algorithm achieved an overall accuracy of 91.65%. In some cases, the presence of a large overlap between objects in the image reduced the detection accuracy. This was because of two main reasons; 1) high interference and ambiguity in the object edges, so that Hough transform was not able to detect the predefined patterns in the objects and, 2) weeds highly overlapped with sugar beet plants and thereby they were wrongly detected as sugar beet. However, since there is no or little interference between plants at the four-leaf stage, this interference can be eliminated by morphological operations. Due to this fact, it can be said that the results of GHT algorithm are acceptable for the detection of sugar beet in the plants close to four-leaf stage.
    Conclusions
    A special feature in the shape of sugar beet leaves was used as a criterion to distinguish between sugar beet and weeds. The results showed that by quantifying this special feature, which is an S-shaped curve near the petioles connection of beet leaves, sugar beet can be discriminated from weeds with an accuracy of 91.65 %. Recalled that this feature is a shape characteristic, therefore, the generalized Hough algorithm must be applied prior to plant canopy development, which is consistent with the critical period of weed control in sugar beet fields.
    Keywords: Generalized Hough, Shape processing, Sugarbeet, Visible machine vision, Weed
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال