جستجوی مقالات مرتبط با کلیدواژه "neurodegenerative diseases" در نشریات گروه "پزشکی"
-
Introduction
Propylene glycol (PG) is frequently used as a solvent for various medications. However, there is substantial evidence of Propylene glycol toxicity, such as depression, agitation, and seizures, particularly when used in combination with other drugs. Here, we aimed to study the effect of Propylene glycol administration in combination with amyloid β₁₋₄₀ injection on hippocampal neurons.
Material & MethodsThirty-six male Wistar rats were randomly divided into four groups: sham, amyloid β₁₋₄₀ injection group, Propylene glycol group, and amyloid β₁₋₄₀ + Propylene glycol group. Alternation behavior, number of neurons in the hippocampus, lipid peroxidation markers, and superoxide dismutase levels were analyzed in all rats.
ResultsWhen Propylene glycol was co-administered with amyloid β₁₋₄₀, a notable reduction in the mean neuronal count was observed in the CA1, CA3, and DG regions compared with the amyloid β₁₋₄₀ only injected animals (P < 0.05). Furthermore, Propylene glycol induced an increase in lipid peroxidation markers (10.78 ± 0.4) and a decrease in antioxidant content (2.8 ± 0.17) when administered with amyloid β₁₋₄₀, compared to the animals that received only amyloid β₁₋₄₀ (P < 0.05). A similar pattern was found in alternation behavior compared with the group with amyloid β₁₋₄₀ injection (P < 0.001).
ConclusionPropylene glycol could produce excessive neurotoxicity in regions of the hippocampus when co-administered with amyloid β₁₋₄₀. It likely increases lipid peroxidation and reduces superoxide dismutase in the rat brain. The use of different agents as a vehicle should be considered, especially in the elderly.
Keywords: Propylene Glycol, Superoxide Dismutase, Malondialdehyde, Neurodegenerative Diseases, Amyloid Beta-Peptides -
Juglans regia L. (walnut) has a rich history in traditional medicine due to its various medicinal properties, including its neuroprotective effects on nervous system disorders. This updated review sheds light on the therapeutic potential of walnuts in nervous system disorders such as Alzheimer’s disease, Parkinson’s disease, depression, epilepsy, and pain, supported by evidence from in vivo and in vitro studies. These beneficial effects are attributed to the walnut’s rich composition of bioactive compounds, including gallic acid, protocatechuic acid, ferulic acid, sinapate, ellagic acid, p-hydroxybenzoic acid, p-coumaric acid, quercetin 3-galactoside, juglone, vanillic acid, quercetin, myricetin, kaempferol, apigenin, luteolin, daidzein, and others. The mechanisms underlying the neuroprotective effects of walnuts include decreasing oxidative stress, inflammation, apoptosis, proteolysis, β-amyloid plaque accumulation, acetylcholinesterase (AChE) activity, phosphorylated-c-Jun N-terminal kinase (p-JNK) levels, increasing adenosine triphosphate (ATP) levels, mitochondrial homeostasis, expression of mitophagy-related proteins, and activating the nuclear factor erythroid 2–related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (KEAP1)/heme oxygenase-1 (HO-1) pathway. Although walnuts hold great promise in managing nervous system disorders and their complications, further preclinical and clinical investigations are necessary to consolidate these findings. This comprehensive review highlights the potential of walnuts as a natural therapeutic agent and encourages future research to unlock their full neuroprotective potential.
Keywords: Analgesics, Anti-Inflammatory Agents, Anti-Oxidants, Epilepsy, Herbal Medicine, Neurodegenerative Diseases -
BackgroundAlzheimer’s disease (AD) is a neurodegenerative condition characterized by gradual cognitive impairment, including loss of synapses and nerve cells involved in learning, memory, and habit formation processes. Bone Marrow Mesenchymal Stem Cells (BM-MSCs) are multipotent cells. Because of their self-renewable, differentiation, and immunomodulatory capabilities, they are commonly used to treat many disorders. Hence, the current study intends to examine the effect of BM-MSCs transplantation on Aluminum chloride (AlCl3)-induced cognitive problems, an experimental model resembling AD’s hallmarks in rats.MethodsThe study was conducted in 2022 at The Biomedical Laboratory Faculty of Medicine, Andalas University, Indonesia. Adult male Wistar rats (three groups: negative control; no intervention+treatment with PBS; positive control: AlCl3+treatment with aqua dest; AlCl3+BM-MSCs: AlCl3+treatment with BM-MSCs, n=5 each) were treated daily with AlCl3 orally for five days. Stem cells were intraperitoneally injected into rats at a dose of 1x106 cells/rat. The same quantity of phosphate-buffered saline was given to the control group. One month after stem cell injection, the rat brain tissue was removed and placed in the film bottles that had been created. The expression of neural progenitor cell markers, including nestin and sex-determining Y-box 2 (SOX-2), was analyzed using real-time polymerase chain reaction (RT-PCR). Rats’ cognitive and functional memory were examined using Y-maze. Data were analyzed using SPSS software (version 26.0) with a one-way analysis of variance (ANOVA) test.ResultsThe gene expression of nestin (29.74±0.42), SOX-2 (31.44±0.67), and percent alternation of Y-maze (67.04±2.28) increased in the AlCl3+BM-MSCs group compared to that in the positive control group. RT-PCR analysis indicated that nestin (P<0.001) and SOX-2 (P<0.001) were significantly enhanced in the AlCl3+BM-MSCs group compared to the positive control group. This group also indicated an increased percent alternation of Y-maze (P<0.001) in the AlCl3+BM-MSCs group compared to the positive control group.ConclusionDue to its potential effects on cell therapy, BM-MSCs were found effective in a rat model of AD on the impairment of the rats’ behavior and increased expression of neural progenitor cell markers.Keywords: Mesenchymal Stem Cells, Neurodegenerative Diseases, Aluminum Chloride, Reverse Transcriptase Polymerase Chain Reaction, Nestin
-
IntroductionCognitive disorders, characterized by transient stages and potential Alzheimer's disease, are influenced by changes in iron deposits in the brain. These changes can lead to toxicity and neuron death. Quantitative susceptibility mapping is used to accurately represent these changes, allowing for a more accurate evaluation of the time window of each cognitive disorder stage and the need for targeted treatment.Material and MethodsThe Alzheimer's Disease Neuroimaging Initiative research database was used to download the data and eight healthy participants and twenty-one participants with cognitive disorders based on MMSE cognitive test scores in 5 groups of cognitively normal, Subjective Memory Concern , Early Mild Cognitive Impairment, Late Mild Cognitive Impairment and Alzheimer's disease were included in this study. Quantitative Susceptibility Mapping processing was performed using the SEPIA toolbox in MATLAB, and segmentation was performed using FSL software. Finally, statistical analyzes were performed using SPSS V26 software.ResultsStatistically significant changes were observed in the QSM values of the right thalamus (p-value = 0.043) in the LMCI group and the right hippocampal nucleus (p-value = 0.050) in the control group.ConclusionAfter one year, the right hippocampal nucleus shows increased iron accumulation in healthy individuals, suggesting that the nucleus is susceptible to the highest rate of iron deposition in healthy individuals. Based on this result, the hypothesis that iron deposits are the cause of the unknown cause-and-effect relationship between iron deposits and Alzheimer's disease may be confirmed.Keywords: Cognitive Dysfunction, Neurodegenerative Diseases, Alzheimer Disease, Iron Metabolism Disorders
-
مقدمه
بیماری های پارکینسون و آلزایمر دو بیماری شایع تحلیل برنده عصبی هستند که علت آن ها تا حد زیادی ناشناخته مانده است. این دو بیماری ویژگی های بیماری زایی مشابهی مانند از دست دادن پیشرونده نورون های خاص، و حضور پروتئین های انباشته شده دارند. اگزوزوم ها با ساختار دو لایه لیپیدی مشابه غشاء سلولی از اکثر سلول های مختلف بدن مشتق می شوند و به راحتی می توانند از انواع غشاهای بیولوژیک مانند سد خونی- مغزی عبور کنند. اگزوزوم ها برای انتقال واسطه ها و اطلاعات بین سلول ها مهم هستند. بنابراین، آن ها می توانند نقش حیاتی در شرایط طبیعی و پاتولوژی مغز، از جمله اختلالات عصبی مانند بیماری پارکینسون و بیماری آلزایمر داشته باشند. این مقاله نقش و کاربرد اگزوزوم ها در بیماری زایی و درمان بیماری های پارکینسون و آلزایمر را بررسی می کند.
نتیجه گیریساختار و بیوژنز اگزوزوم ها ممکن است نقش های مهمی در تشخیص و پیشرفت بیماری های تحلیل برنده عصبی داشته باشد. علاوه بر این، درک مکانیسم های پیچیده حاکم بر تشکیل و ترکیب اگزوزوم در شرایط پاتولوژی می تواند بینش ارزشمندی در مورد پاتوفیزیولوژی زمینه ای بیماری های پارکینسون و آلزایمر ارائه دهد.
کلید واژگان: بیماری های تحلیل برنده عصبی, سد خونی- مغزی, سیستم اعصاب مرکزی, غشاء سلولیIntroductionParkinson's and Alzheimer's diseases are two common neurodegenerative diseases whose etiology remains largely unknown. These two diseases share similar pathogenesis features, including the progressive loss of specific neurons and the accumulation of deposited proteins. Exosomes, characterized by a lipid bilayer structure akin to that of the cell membrane, originate from various cells throughout the body and can readily traverse different biological membranes, such as the blood-brain barrier. Exosomes are important for the transfer of mediators and information between cells. Therefore, they can play a vital role in the normal and pathological conditions of the brain, including neurodegenerative disorders such as Parkinson’s disease and Alzheimer's disease. This article reviews the role and application of exosomes in the pathogenesis and treatment of Parkinson's and Alzheimer's diseases.
ConclusionThe structure and biogenesis of exosomes may play crucial roles in both the diagnosis and progression of neurodegenerative diseases. Moreover, understanding the complex mechanisms governing exosome formation and composition in pathological conditions could offer valuable insights into the underlying pathophysiology of Parkinson's and Alzheimer's diseases.
Keywords: Neurodegenerative Diseases, Blood-Brain Barrier, Central Nervous System, Cell Membrane -
مقدمه
زعفران (Crocus sativus L.) ادویه ای است که در سراسر جهان به عنوان رنگ و طعم دهنده استفاده می شود. زعفران همچنین منبعی از ترکیبات زیست فعال متعدد با فواید بالقوه برای سلامتی است. افزایش شیوع اختلالات عصبی و روانی مانند اضطراب، افسردگی، بیماری آلزایمر و بیماری پارکینسون در سال های اخیر به یک نگرانی قابل توجه تبدیل شده است. شواهد نشان می دهد که استرس اکسیداتیو و التهاب عصبی در القاء و پیشرفت این اختلالات نقش دارند. اگرچه محققان زمان قابل توجهی را صرف مطالعه این بیماری ها کرده اند، اما هنوز داروهای محدودی برای درمان آن ها وجود دارد. این مقاله به بررسی خواص دارویی زعفران و ترکیبات آن با تمرکز بر اثرات محافظت کننده عصبی و آنتی اکسیدانی آن می پردازد. علاوه بر این، کاربردهای بالینی آن ها را در درمان بیماری های سیستم عصبی بررسی می کنیم.
نتیجه گیریزعفران به دلیل خواص آنتی اکسیدانی و ضد افسردگی، اثرات مفیدی بر طیف وسیعی از اختلالات عصبی انسان دارد. ترکیبات موجود در زعفران به عنوان عوامل درمانی بالقوه برای درمان برخی بیماری های مغزی نویدبخش است.
کلید واژگان: بیماری های نورودژنراتیو, التهاب, آنتی اکسیدان ها, استرس اکسیداتیو, عوامل محافظت کننده عصبیIntroductionSaffron (Crocus sativus L.) is a spice that is used worldwide as a coloring and flavoring agent. Saffron is also a source of numerous bioactive compounds with many health benefits. The rising prevalence of neurological and psychological disorders, such as anxiety, depression, Alzheimer's disease, and Parkinson's disease, has become a significant concern in recent years. Evidence indicates that oxidative stress and neuroinflammation play a role in the induction and development of these disorders. Although researchers have spent considerable time studying these diseases, there are still limited drugs to treat them. This article reviews the medicinal properties of saffron and its compounds focusing on their neuroprotective and antioxidant effects. Furthermore, we explore their clinical applications in the treatment of nervous system diseases.
ConclusionSaffron shows beneficial effects against a wide range of human neurological disorders due to its antioxidant and anti-depressant properties. Compounds found in saffron hold promise as potential therapeutic agents for the treatment of certain brain diseases.
Keywords: Neurodegenerative Diseases, Inflammation, Antioxidants, Oxidative Stress, Neuroprotective Agents -
Protein aggregation is a complex process that plays a key role in the development of various diseases, including neurodegenerative disorders, metabolic conditions, and systemic amyloidoses. This brief review summarizes the current understanding of the mechanisms behind protein aggregation, its impact on disease progression, and potential treatment approaches. We extensively researched recent influential publications, critically evaluated relevant articles, and synthesized key concepts, emerging trends, and promising research areas. Genetic mutations, environmental stress, and aging all contribute to the misfolding and aggregation of proteins. The aggregation process is influenced by thermodynamic and kinetic factors, involving stages such as nucleation, elongation, and the formation of aggregate structures. Biological systems, including molecular chaperones, the ubiquitin-proteasome pathway, and autophagy, play crucial roles in preventing and managing protein aggregates. Pathological protein aggregation is associated with diseases such as Alzheimer's, Parkinson's, prion diseases, cataracts, type II diabetes, and systemic amyloidoses. The review also emphasizes the potential of therapeutic strategies, such as small molecule inhibitors, immunotherapy, modulation of proteostasis pathways, nanotechnology, and gene therapy, in addressing these debilitating diseases. A comprehensive understanding of protein aggregation mechanisms and the development of effective therapeutic interventions offer hope in the fight against these diseases. This review provides current insights and recommends future research directions, highlighting the significant implications for human health and treatment innovation.
Keywords: Protein Aggregates, Neurodegenerative Diseases, Protein Folding, AMYLOIDOSIS, Molecular Chaperones, Therapeutics -
مقدمه
آدرنولکودیستروفی، یک بیماری تحلیل برنده ی عصبی (نورودژنراتیو) وابسته به کروموزوم X است که سیستم اعصاب مرکزی به ویژه ماده ی سفید و میلین را درگیر می کند. بیماران مبتلا به این بیماری، در بدو تولد بدون علامت هستند و به تدریج با افزایش سن علایم بیماری آشکار می شود. شایع ترین علایم اولیه بیماری، اختلال شناختی و ادراکی بوده که به تدریج و با گذشت زمان سایر علایم بیماری ازجمله تغییر در رفتار به صورت کناره گیری اجتماعی و افسردگی و اختلال در راه رفتن و علایم مخچه ای آشکار می شود. اختلال نقص توجه- بیش فعالی (Attention deficit hyperactivity disorder) ADHD یک بیماری شایع است که هم کودکان و هم بزرگسالان را تحت تاثیر قرار می دهد و با علایم مختل کننده ی نامناسب سن در ابعاد بی توجهی و یا بیش فعالی مشخص می شود.
گزارش مورد:
اگرچه اختلالات رفتاری در سیر بیماری آدرنولکودیستروفی دیده می شوند ولی مشاهده ی این اختلالات به عنوان علامت شروع بیماری یافته ی شایعی نیست. در این مقاله به معرفی کودکی پنج ساله پرداخته شده است که با علایم تغییر خلق و بیش فعالی و کاهش تمرکز ارجاع شده که در نهایت طی بررسی تشخیص آدرنولکودیستروفی برای بیمار اثبات شد.
نتیجه گیریدر این مقاله یک کودک 5 ساله مبتلا به تغییر خلق و بیش فعالی با تشخیص آدرنولکودیستروفی را گزارش کردیم. یکی از تظاهرات بالینی این بیماری تغییرات رفتاری است که در مورد بیمار ما در ابتدا تنها تغییرات رفتاری داشت، که این اختلالات به عنوان علامت شروع بیماری، یافته ی شایعی نبود.
کلید واژگان: اختلال بیش فعالی- کم توجهی, بیماری نورودژنراتیو, دیستروفی, موارد نادرBackgroundAdrenoleukodystrophy is an X-linked neurodegenerative disease that affects the central nervous system, especially the white matter and myelin. The most common early symptoms of the disease are cognitive and perceptual disorders, which gradually and over time other symptoms of the disease, including changes in behavior in the form of social withdrawal and depression, gait disorders, and cerebellar symptoms appear. Attention Deficit Hyperactivity Disorder (ADHD) is a common disease that affects both children and adults and is characterized by inappropriate age-related symptoms in the dimensions of inattention or hyperactivity.
Case Report:
Although behavioral disorders are seen frequently in the course of the adrenoleukodustrophy, it is not common to observe these disorders as presenting sign of the disease without other neurological manifestations. Here, we present a five years old boy who suffered from attention deficit -hyper activity disorder with failure in treatment with risperidone and gradually worsening the symptoms .After neurological investigations, final diagnosis of adrenoleukodystrophy was confirmed for the patient.
ConclusionIn this article, we reported a 5-year-old child with mood swings and hyperactivity diagnosed with adrenoleukodystrophy. One of the rare clinical manifestations of this disease is behavioral changes, which in the case of our patient initially had only behavioral changes.
Keywords: Attention deficit disorder with hyperactivity, Case Reports, Dystrophy, Neurodegenerative diseases -
Background
Alzheimer's Disease (AD) is one of the most prevalent chronic neurodegenerative disorders. The present study aims to better understand the mechanism by which Citrus aurantium (C. aurantium) and Lavandula angustifolia (L. angustifolia) hydro–alcoholic extracts were used to treat AD and anti –oxidant issues in a laboratory model.
Methods15 male Wistar rats, weighing 250±20 gr, aged 6–8 weeks, were used. Amyloids in the brain were found and identified using the shuttle box and Congo red test. ELISA testing for norepinephrine and serotonin, Superoxide Dismutase (SOD), Malondialdehyde (MDA), and Real–time PCR for expression of the APP and GLT1 genes were done.
ResultsThe shuttle box test demonstrated that AD produces behavioral harm, since it significantly reduces passive avoidance learning. The Congo red test revealed that the AD models had much more amyloid beta in their brain tissue than the control. Norepinephrine levels were also decreased by using both extracts in test group. Treatment with both extracts led to a substantial rise in SOD activity and fall in MDA concentration.
ConclusionThe gene expression data indicated that the relative expression of the APP and GLT1 genes was shown to be lower in the groups treated with both extracts. C. aurantium and L. angustifolia may therefore offer a multi–target treatment strategy for AD, which calls for more research in this area.
Keywords: Amyloid beta-peptides, Antioxidants, Brain, Citrus, Lavandula, Neurodegenerative diseases, Norepinephrine, Rats, Serotonin -
مقدمه
بیماری های تحلیل برنده عصبی سبب اختلالات متعدد در عملکرد نورونی در مغز می شوند که منجر به اختلالات شناختی و ناتوانی در نورون حرکتی می شود. اگرچه فاکتورهای متعددی در گسترش این بیماری ها نقش دارند، مواد غذایی توانسته اند در پاتوژنز این بیماری ها ایفای نقش کنند. کمبود های تغذیه ای یا عدم تعادل در تنظیم ویتامین ها ممکن است بر متابولیسم نورونی اثر گذاشته و منجر به عملکرد های غیر طبیعی در مغز مانند تولید استرس اکسیداتیو، اختلال عملکرد میتوکندری، تجمع پروتیین ها (سینوکلین، پلاک های بتا آمیلویید) شوند. این مساله در نهایت منجر به بیماری تحلیل برنده عصبی می شود. ویتامین های محلول در آب و محلول در چربی نه تنها می توانند از ابتلا به بیماری های پارکینسون و آلزایمر جلوگیری کنند بلکه با فعالیت آنتی اکسیدانی و ضد التهابی خود بر روی این بیماری ها اثر درمانی دارند. البته لازم به ذکر است نتایج برخی از مطالعات هیچ ارتباطی را بین عملکرد ویتامین و پیشگیری از بیماری های تحلیل برنده عصبی نشان نمی دهند.
نتیجه گیریبا توجه به نقش محافظت کننده عصبی ویتامین های محلول در آب و چربی، در این مقاله مروی اثرات این ویتامین ها بر روی بیماری های تحلیل برنده عصبی را مورد بحث قرار داده ایم.
کلید واژگان: ویتامین, بیماری های نورودژنراتیو, پارکینسون, آلزایمرIntroductionNeurodegenerative diseases (ND) cause several disruptions in the neuronal function in the brain, resulting in cognitive disorders as well as motor neuron disabilities. Although several factors contribute to the development of these diseases, nutrients could play an important role in their pathogenesis. Nutritional deficiencies or imbalances in vitamins regulation may influence neurological metabolism and lead to abnormal functions in the brain, such as oxidative stress production, mitochondrial dysfunction, and protein accumulation (Synuclein, β amyloid plaques). This may eventually lead to ND. Water- and fat-soluble vitamins not only may prevent Parkinson's and Alzheimer's diseases but also have therapeutic effects on these diseases via their antioxidant and anti-inflammatory properties. However, some studies indicate that vitamin function does not influence on prevention of ND.
ConclusionRegarding to neurological protection role of water- and fat-soluble vitamins, in this review article, we have summarized the role of the neuroprotective effects of vitamins on ND.
Keywords: Vitamins, Alzheimer Disease, Parkinson Disease, Neurodegenerative Diseases -
One of the most challenging problems of the current treatments of neurodegenerative diseases is related to the permeation and access of most therapeutic agents to the central nervous system (CNS), prevented by the blood-brain barrier (BBB). Recently, intranasal (IN) delivery has opened new prospects because it directly delivers drugs for neurological diseases into the brain via the olfactory route. Recently, PLGA-based nanocarriers have attracted a lot of interest for IN delivery of drugs. This review gathered clear and concise statements of the recent progress of the various developed PLGA-based nanocarriers for IN drug delivery in brain diseases including Alzheimer’s, Parkinson’s, brain tumors, ischemia, epilepsy, depression, and schizophrenia. Subsequently, future perspectives and challenges of PLGA-based IN administration are discussed briefly.
Keywords: Drug Delivery, Intranasal, Nanoparticle, Neurodegenerative diseases, PLGA -
مقدمه
اختلال در فرایند میلین سازی و تخریب بافت میلین، منجر به اختلال در عملکرد سیستم عصبی مرکزی می شود. نقش محافظت کنندگی نورونی لیتیوم کلرید در درمان بیماری های عصبی به اثبات رسیده است. در مطالعه ی حاضر، اثرات لیتیوم کلرید در پیشگیری از تخریب بافت میلین القاء شده با کاپریزون در جسم پینه ای مغز موش مورد بررسی قرار گرفت.
روش هادر مطالعه ی حاضر، 40 عدد موش سوری ماده ی نژاد C57BL/6 با وزن 25-20 گرم به صورت تصادفی به چهار گروه شامل گروه های شاهد، شم، کاپریزون و لیتیوم کلراید/کاپریزون تقسیم شدند. ترکیب لیتیوم کلراید روزانه با دوز mg/kg50 بصورت داخل صفاقی استفاده شد. در پایان مطالعه، به منظور بررسی میانگین تراکم میلین و بیان ژن میلین، از رنگ آمیزی تلوییدین بلو، ایمونوهیستوشیمی و Real Time-PCR استفاده شد.
یافته هانتایج رنگ آمیزی های ایمونوهیستوشیمی و تلوییدین بلو نشان داد که تراکم میلین و درصد سلول های بیان کننده ی مارکر (Myelin basic protein) MBP در گروه دریافت کننده ی لیتیوم، نسبت به گروه کاپریزون به شکل معنی داری افزایش پیدا کرده است. علاوه بر این، نتایج Real Time-PCR نشان داد که استفاده از لیتیوم می تواند بیان ژن میلین را افزایش دهند.
نتیجه گیرینتایج مطالعه ی حاضر نشان داد که فاکتورهای محافظت کننده ی عصبی، نظیر کلرید لیتیوم توانایی پیشگیری از تخریب بافت میلین را دارند و لذا استفاده از این ترکیب می تواند راهکار مناسبی برای پیشگیری از ابتلا و کاهش پیشرفت بیماری های تخریب کننده ی بافت عصبی باشد.
کلید واژگان: کلرید لیتیوم, میلین, پروتئین پایه میلین, بیماری های تخریب کننده ی بافت عصبی, عوامل محافظت کننده ی عصبیBackgroundThe disturbance of the myelination process and myelin tissue destruction leads to central nervous system dysfunction. The neuroprotective role of lithium chloride in the treatment of neurological diseases has been proven. In the present study, the effects of lithium chloride in preventing the destruction of myelin tissue induced by cuprizone in the corpus callosum of the mouse brain were investigated.
MethodsIn this study, 40 female C57BL/6 mice weighing 20-25 grams were randomly divided into four groups including control, sham, cuprizone and lithium chloride/cuprizone groups. The compound of lithium chloride was used intra peritoneally at a dose of 50 mg/kg daily. At the end of the study, in order to check the average myelin density and myelin gene expression, toluidine blue staining, immunohistochemistry and Real Time-PCR were used.
FindingsThe results of immunohistochemistry and toluidine blue staining showed that, the density of myelin and the percentage of cells which expressing the Myelin Basic Protein (MBP) marker increased significantly in the group which receiving lithium compared to the cuprizone group. In addition, Real Time-PCR results showed that the use of lithium can increase myelin gene expression.
ConclusionThe results of the present study showed that neuroprotective factors, such as lithium chloride, have the ability to prevent the destruction of myelin tissue, and therefore, the use of this combination can be a suitable manner to prevent and reduce the progression of neurodegenerative diseases.
Keywords: Lithium chloride, Myelin, Myelin basic protein, Neurodegenerative diseases, Neuroprotective agents -
Neurodegenerative diseases are comprise a prominent class of neurological diseases. Generally, neurodegenerative diseases cannot be cured, and the available treatments can only regulate the symptoms or delay the disease progression. Among the several factors which could clarify the possible pathogenesis of neurodegenerative diseases, next to aging as the main risk, the dietary related diseases are the most important. Vegetable oils, which are composed of triacyclglycerols as the main components and several other components in a trace amount, are the main part of our diet. This review aims to study the effect of refined or unrefined vegetable oil consumption as a preventive or aiding strategy to slow or halt the progression of neurodegenerative diseases. In the refining process, owing to the chemical materials or severe temperatures of the refining process, removal of the desirable minor components is sometimes unavoidable and thus a worrisome issue affecting physical and neurological health.
Keywords: Vegetable oil, Refining process, Virgin oil, Health effect, Neurodegenerative diseases -
Deep brain stimulation (DBS) is a surgically-based treatment for advanced Parkinson’s disease (PD) that has undergone technological developments. Artificial intelligence (AI) has been used successfully in many healthcare problems, including DBS. Indeed, DBS method is expected to change with the increasing growth of artificial intelligence, especially machine learning methods. So here we explore how AI can improve the results of DBS treatment.
Keywords: Artificial Intelligence, Deep Brain Stimulation, Neurodegenerative Diseases, Parkinson’s Disease -
Neurodegenerative diseases can make life difficult and lead to death in many cases. They also can be difficult, time-consuming, and costly to diagnose with enough accuracy/certainty. Artificial intelligence (AI) has shown promise in tackling some of the challenges present in medical imaging and is anticipated to become a crucial tool in health care applications in the near future. In particular, deep learning methods have displayed great performance in various subfields of image processing, including but not limited to image segmentation, image synthesis, and image reconstruction. In this paper, many state-of-the-art applications of deep learning models in image processing were reviewed.
Keywords: Artificial Intelligence, Deep Learning, Medical Imaging, Neurodegenerative Diseases -
Background
Alzheimer’s disease (AD) is one of the most significant public health concerns and tremendous economic challenges. Studies conducted over the past decades show that exposure to radiofrequency electromagnetic fields (RF-EMFs) may relieve AD symptoms.
ObjectiveTo determine if exposure to RF-EMFs emitted by cellphones affect the risk of AD.
Material and MethodsIn this review, all relevant published articles reporting an association of cell phone use with AD were studied. We systematically searched international datasets to identify relevant studies. Finally, 33 studies were included in the review. Our review discusses the effects of RF-EMFs on the amyloid β (Aβ), oxidative stress, apoptosis, reactive oxygen species (ROS), neuronal death, and astrocyte responses. Moreover, the role of exposure parameters, including the type of exposure, its duration, and specific absorption rate (SAR), are discussed.
ResultsProgressive factors of AD such as Aβ, myelin basic protein (MBP), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and neurofilament light polypeptide (NFL) were decreased. While tau protein showed no change, factors affecting brain activity such as glial fibrillary acidic protein (GFAP), mitogen-activated protein kinases (MAPKs), cerebral blood flow (CBF), brain temperature, and neuronal activity were increased.
ConclusionExposure to low levels of RF-EMFs can reduce the risk of AD by increasing MAPK and GFAP and decreasing MBP. Considering the role of apoptosis in AD and the effect of RF-EMF on the progression of the process, this review indicates the positive effect of these exposures.
Keywords: Neurodegenerative Diseases, Dementia, Alzheimer’s disease, Non-Ionizing Radiation, Cellphone -
اثر کورکومین در القای تمایز سلول های بنیادی مزانشیمی به سلول های عصبی
مقدمه:
بیماری های نورودژنراتیو، منجر به اختلال در عملکرد سیستم عصبی و مرگ نورون ها می شوند. سلول های بنیادی مزانشیمال مشتق از مغز استخوان (Bone marrow-derived mesenchymal stem cells) BM-MSCs می توانند در بازسازی سلول های نورونی مورد استفاده قرار گیرند. کورکومین جزء فعال ادویه زردچوبه است. هدف از این مطالعه، بررسی امکان القای تمایز سلول های بنیادی مزانشیمی مغز استخوان به سلول های نورون در مجاورت با کورکومین بود.
روش هادر این مطالعه ابتدا BM-MSCs از مغز استخوان رت استخراج و کشت داده شد. میزان سمیت کورکومین روی سلول های MSC با استفاده از روش MTT بررسی شد. برای بررسی قدرت القای تمایز به نورون، سلول های BM-MSCs در ابتدا به مدت 24 ساعت در محیط پیش القای تمایز به نورون و سپس به مدت 6 ساعت در محیط القایی تمایز حاوی BHA و DMSO (کنترل مثبت) و یا حاوی کورکومین کشت داده شدند. نتایج با بررسی ریخت شناسی سلولی توسط میکروسکوپ معکوس ارزیابی شد.
یافته هانتایج تست MTT نشان داد که غلظت های 1 تا 10 میکرومولار کورکومین کاهش قابل توجهی در میزان پایایی سلول ها در زمان 48 ساعت ایجاد نکردند. نتایج القای تمایز نشان داد که در گروه آزمایشی کورکومین، تمایز سلول های BM-MSCs از ساعت دوم به بعد قابل مشاهده بود و از ساعت چهارم به بعد همانند گروه شاهد مثبت، سلول ها به صورت توده های کروی نوروسفری تغییر شکل دادند.
نتیجه گیریکورکومین با اثر القایی مناسب بر تمایز MSC به سلول های پیش ساز عصبی می تواند به گزینه ی مناسب برای مطالعات بعدی جهت معرفی یک داروی موثر در درمان بیماری های نورودژنراتیو مطرح باشد.
کلید واژگان: سلول های بنیادی مزانشیمی, کورکومین, بیماری های نورودژنراتیو, نوروژنز, Curcuma longa LThe Effect of Curcumin on Inducing Differentiation of Mesenchymal Stem Cells into NeuronsBackgroundNeurodegenerative diseases lead to the death of neurons and dysfunction of the nervous system. Bone marrow-derived mesenchymal stem cells (BM-MSCs) can be used in the regeneration of neuronal cells. Curcumin is the active ingredient of Curcuma longa. The purpose of this study was to examine neurogenerative induction effects of curcumin on the BM-MSCs.
MethodsThe MSCs were extracted from rats. The cytotoxic effects of curcumin on the MSCs were evaluated by MTT assay. For the purpose of evaluating the induction of neuron differentiation, BM-MSCs were cultured with pre-induction medium for 24 h and then in inductive medium containing curcumin or BHA and DMSO (positive control). The results were evaluated by examining cell morphology via inverted microscope.
FindingsThe results of the MTT test showed that curcumin (1, 5 and 10 μM) did not affect the growth rate of MSC cells. The results of induction of neuron differentiation showed that the differentiation of BM-MSCs cells was visible from the second hour under treatment with curcumin. While, during the fourth hour onwards, the BM-MSCs were transformed into spherical neurosphere masses like those that were treated in the positive control group.
ConclusionCurcumin with a suitable inducing effect on the differentiation of MSC into neural progenitor cells can be considered as a potential agent for further studies to introduce an effective drug in the treatment of neurodegenerative diseases.
Keywords: Mesenchymal stem cells, Curcumin, Neurodegenerative diseases, Neurogenesis, Curcuma longa L -
Background
Evidence suggests that dysregulation in AMPA-type glutamate receptors (AMPA-Rs) has been associated with the pathogenesis of Alzheimer’s disease (AD), especially during its early phase. Hence, the present study was performed to elucidate the impact of resveratrol (RV) on hippocampal expression of AMPA-Rs in a rat model of AD.
MethodsA rat model of cognitive deficits was developed by a stereotactic intracerebroventricular infusion of lipopolysaccharide (LPS) in male Wistar rats (n=24). The LPS+RV30 group (n=12) received intraperitoneal injections of RV (30 mg/kg) at 30 min, 12 h, and 24 h before LPS injection. Meanwhile, the model (LPS) and sham (SO) groups only were treated with the vehicle solution (normal saline containing 1% ethanol). One day after the LPS infusion, the mRNA expressions of AMPA-Rs subunits (Gria1-4) were evaluated by RT–PCR. In addition, hippocampal levels of lipid peroxidation, superoxide dismutase, and nitric oxide were assessed. Seven days after the LPS challenge, the remaining animals (n=6, each group) were subjected to the Y-maze task, and the expression and localization of GluA1-containing AMPA-Rs in their hippocampi were investigated immunohistochemically.
ResultsPretreatment with RV prevented LPS-induced cognitive dysfunction in rats and enhanced their working memory performance. Moreover, RV could moderately prevent oxidant-antioxidant imbalance in rats’ hippocampi. RT-PCR results revealed that the hippocampal mRNA expression of the Gria1 was significantly reduced, while the expressions of Gria2 and Gria3 were increased in LPS-challenged rats. RV significantly modulated the alteration in the Gria1 mRNA expression; however, it could not influence the Gria2 and Gria3 mRNA expressions. The immunohistochemical assessment showed a significantly reduced immunoreactivity for GluA1- containing AMPA-Rs in all hippocampal subfields of the LPS group, and RV could effectively ameliorate the alteration.
ConclusionThis study is the first to report that RV could modulate GluA1-containing AMPA-Rs dysregulation in a rat AD model.
Keywords: AMPA receptors, Alzheimer’s disease, Hippocampus, Lipopolysaccharide, Neurodegenerative diseases -
مقدمه
بیماری های نورودژنراتیو یا تحلیل برنده عصبی، گروهی از بیماری های عصبی همراه با آسیب به نورون نامیده می شوند که در بیشتر موراد درمان موثری برای آن وجود ندارد. تشخیص به موقع و دقیق بیماری های نورودژنراتیو اهمیت زیادی دارد. تشخیص نادرست یا دیرهنگام این بیماری ها می تواند منجر به درمان اشتباه و افزایش هزینه بیمار شود. از آنجایی که درمان بیماری های نورودژنراتیو باید در مراحل بدون علامت بیماری شروع شود، در سال های اخیر محققین تشویق به شناسایی بیومارکرهایی برای تشخیص زودهنگام بیماری های مختلف از جمله بیماری های نورودژنراتیو شده اند. این بیومارکرها شامل انواع ژنتیکی، مبتنی بر سیالات زیستی و مبتنی بر تصویربرداری هستند. جهش های ژنتیکی که باعث یک بیماری نورودژنراتیو خاص می شوند، بیومارکرهای ژنتیکی هستند که بیشترین کاربرد را دارند. DNA و RNA نیز با اشکال خانوادگی بیماری های نورودژنراتیو مرتبط است. بیومارکرهای مایع مغزی- نخاعی و خونی به طور گسترده برای بیماری های نورودژنراتیو استفاده می شوند. بیومارکرهای مبتنی بر تصویر برداری پبشرفت بسیاری داشته اند و به بیومارکرهای تشخیصی اولیه کمک بسیاری می کنند.
نتیجه گیریانتخاب چند بیوماکر مناسب با هم در توسعه دارو و آزمایش های بالینی برای بیماری های نورودژنراتیو به تشخیص به موقع و بررسی اثربخشی دارو در بیماری های نورودژنراتیو کمک می کند. این مقاله مروری بر انواع و کاربرد بیومارکرها در بیماری آلزایمر و بیماری پارکینسون تمرکز کرده است.
کلید واژگان: بیماری های تحلیلبرنده سیستم عصبی, بیماری پارکینسون, بیماری آلزایمر, نشانگرهای زیستیIntroductionNeurodegenerative diseases (NDs) are a range of neurologic conditions associated with neuron death, mostly with no effective treatment. The early and accurate diagnosis of NDs is very important. Late and/or inaccurate diagnosis of NDs leads to making a mistake in treatment and increasing the patient’s cost. The clinical challenge of NDs includes the inability to make a definitive diagnosis in the early stages of the disease and difficulties in predicting disease progression. In recent years, several attempts have been made to identify and confirm the biomarkers of NDs, including genetic, biofluid, and imaging-based variants. Most often employed genetic biomarkers are genetic mutations that induce a specific neurological illness. DNA and RNA biomarkers are associated with detecting familial forms of NDs. Blood and cerebrospinal fluid indicators are commonly utilized to diagnose NDs. It is noteworthy that imaging-based biomarkers have made significant advances and can be enormously useful for early diagnosis.
ConclusionChoosing several suitable biomarkers concurrently in pharmaceutical research and clinical trials for NDs help to accelerate the identification and evaluation of treatment efficacy in NDs. The present study has focused on the types and applications of biomarkers in Alzheimer's disease and Parkinson's disease.
Keywords: Neurodegenerative Diseases, Parkinson Disease, Alzheimer Disease, Biomarkers -
مقدمه
ضایعات سیستم عصبی مرکزی با آثاری گسترده ازجمله تخریب گسترده و مرگ سلول های عصبی به دنبال عللی همچون ضربات، خونریزی، ادم و التهاب ایجاد می شوند که درنهایت منجر به عدم هماهنگی در حرکات ارادی و اندام ها، از دست رفتن حواس یا حتی مرگ می شوند. امروزه پژوهشگران تلاش های زیادی در جهت یافتن راهکار و شیوه درمانی موثر برای درمان بیماری های تحلیل برنده عصبی کرده اند که از این میان سلول های بنیادی توانسته اند جایگاه ارزشمندی را به دست بیاورند. اگرچه در سال های اخیر این محققین گام های مهمی در زمینه درمان آسیب های سیستم عصبی پیموده اند ولی درمان قطعی تا به اکنون برای این بیماری ها یافت نشده است. در این مطالعه نقش سلول های بنیادی در درمان بیماری های تحلیل برنده عصبی مورد بررسی قرارگرفته است. در این مقاله مروری با بررسی تحقیقات انجام شده، در مورد انواع سلول های بنیادی مختلف، مزایا و معایب هرکدام در درمان بیماری های تحلیل برنده عصبی و نحوه عملکرد آن ها مورد بحث قرارگرفته است.
نتیجه گیریدر حال حاضر انواع مختلف سلول های بنیادی با قابلیت های بالا در رفع مشکلات سیستم عصبی می توانند امید به استفاده از روش های درمانی جدید برای درمان بیماری های تحلیل برنده عصبی را به شکل چشم گیری افزایش دهند. هزینه بالای درمان و عوارض جانبی احتمالی، چالش های اصلی در درمان مبتنی بر سلول های بنیادی است و تحقیقات بیشتری برای بهبود کارایی سلول های بنیادی در محیط های بالینی موردنیاز است.
کلید واژگان: بیماری های تحلیل برنده عصبی, درمان, سلول های بنیادیIntroductionCentral nervous system (CNS) lesions are created by the destruction of nerve cells and neural tissue following trauma, bleeding, and inflammation, which can lead to permanent paralysis disability, or death. Many researchers are trying to find effective approaches for the treatment of neurodegenerative disease (ND) through the application of various stem cells. Although they have recently made important advancements in treating CNS injuries, no definite cure has been found for ND. In the present study, the role of stem cells in the treatment of ND has been reviewed. An overview is provided of the types and characteristics of various stem cells as well as their advantages and disadvantages in treating ND.
ConclusionDifferent types of stem cells with high potential for resolving neural system problems are currently increasing the hope of using new therapies to treat ND. Despite the high cost of treatment and potential side effects, stem cell treatments face numerous challenges, and further research is needed to improve stem cell efficiency in clinical environments.
Keywords: Neurodegenerative Diseases, Therapeutics, Stem Cells
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.