جستجوی مقالات مرتبط با کلیدواژه "support vector machine" در نشریات گروه "پزشکی"
-
Purpose
Accurate detection of Atrial Fibrillation (AF) has great significance in the field of medical science which can reduce the rate of mortality and morbidity. The present study focuses on Electrocardiography (ECG) signal classification using dimensionality reduction techniques combined with R wave to R wave interval (RR interval) features.
Materials and MethodsIn the first approach, Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Independent Component Analysis (ICA), and Probabilistic Principal Component Analysis (PPCA) are performed independently on denoised ECG signal using Discrete Wavelet Transform (DWT) for the classification of ECG signal. In the second approach, the dimensionality reduction techniques combined with RR interval features are used for the classification of ECG signal.
ResultsMachine Learning (ML) algorithms such as Decision Tree (DT), Support Vector Machine (SVM), and Deep Learning (DL) algorithms such as Long Short Term Memory (LSTM) and Bi-Directional LSTM (BiLSTM) are used for classification purposes.
ConclusionThe proposed methodology provided an overall accuracy of 93.65% with PCA and LSTM classifier and an overall accuracy of 99.45% with PCA combined with RR interval features and LSTM classifier. The developed technology has potential applications in many practical solutions.
Keywords: Atrial Fibrillation, Electrocardiography, Discrete Wavelet Transform, Long Short Term Memory, Support Vector Machine, Decision Tree -
مقدمه
برای تشخیص کبد چرب غیرالکلی معمولا از آزمایش فیبرواسکن استفاده می شود که هزینه بالایی دارد. همچنین، آزمایشات کم هزینه مانند اندازه گیری آنزپم های کبدی یا آزمایشات هماتولوژی نمی توانند کبد چرب را به طور قطعی تشخیص دهند و فقط به عنوان ابزارهای اولیه در تشخیص کبد چرب به کار می روند.
مواد و روش هادر این پژوهش، یک مدل یادگیری ماشین برای تشخیص کبد چرب با استفاده از اطلاعات دموگرافیک، آنزیم های کبدی و آزمایشات هماتولوژی ارایه گردید. برای این کار، داده ها از پرونده 1078 مراجعه کننده به بیمارستان امام رضا (ع) سال های 1397 تا 1402 استخراج شده است که شامل 25 متغیر وابسته می باشد. پس از پیش پردازش، اطلاعات به 531 پرونده کاهش یافت. برای جایگزینی داده های گمشده از الگوریتم بهینه سازی ذرات چندهدفه استفاده شد. پس از پیش پردازش، الگوریتم ماشین بردار پشتیبان بر روی این داده ها اجرا گردید. در نهایت، عملکرد الگوریتم پیشنهادی با الگوریتم های مشابه مقایسه و ارزیابی شد.
نتایجدر مرحله پیش پردازش، رکوردهایی که بیش از 20 درصد داده های گمشده داشتند حذف شدند و مابقی رکوردها جایگزینی شدند. سپس داده ها به دو مجموعه آموزش و تست با نسبت 70-30 تقسیم گردید. الگوریتم ماشین بردار پشتیبان با کرنل شعاعی بر روی داده های آموزشی اجرا شد و میزان حساسیت، ویژگی و صحت برای داده های آموزشی به ترتیب 24/96%، 86/90% و 55/93% حاصل گردید و برای داده های تست 80%، 22/77% و 62/78% به دست آمد. همچنین، در این پژوهش نشان داده شد که الگوریتم ماشین بردار پشتیبان پیشنهادی نسبت به شش الگوریتم مشابه عملکرد بهتری دارد.
نتیجه گیریدر این پژوهش نشان داده شده است که با استفاده از الگوریتم های یادگیری ماشین، می توان کبد چرب غیر الکی را با هزینه پایین تری تشخیص داد.
کلید واژگان: یادگیری ماشین, فیروز کبدی, پیش بینیIntroductionThe diagnosis of NAFLD typically involves the use of the FibroScan test, which can be costly. More affordable options, like liver enzyme and hematology tests, cannot diagnose fatty liver disease; they only serve as preliminary tools for its diagnosis.
MethodsIn this study, a machine-learning model was developed to diagnose fatty liver disease using demographic information, liver enzymes, and hematology tests. Data was extracted from the records of 1078 patients who visited Haj Marafi Hospital between 2018 and 2023, encompassing 25 dependent variables. After preprocessing, the data was reduced to 531 records. A multi-objective particle swarm optimization algorithm was used to impute missing data. Following preprocessing, a support vector machine (SVM) algorithm was applied to the data, and the performance of the proposed algorithm was compared and evaluated against similar algorithms.
ResultsDuring preprocessing, records with more than 20% missing data were removed, and the remaining data were imputed. The data was then divided into training and testing sets (70-30 split). The radial basis function (RBF) SVM was applied to the training data, resulting in sensitivity, specificity, and accuracy of 96.24%, 90.86%, and 93.55%, respectively. For the test data, these rates were 80%, 77.22%, and 78.62%.
ConclusionThis study demonstrated that machine learning algorithms can diagnose NAFLD more cost-effectively.
Keywords: Machine Learning, Liver Fibrosis, Prediction, Support Vector Machine -
Background
Modeling with methods based on machine learning (ML) and artificial intelligence can help understand the complex relationships between ergonomic risk factors and employee health. The aim of this study was to use ML methods to estimate the effect of individual factors, ergonomic interventions, quality of work life (QWL), and productivity on work-related musculoskeletal disorders (WMSDs) in the neck area of office workers.
Study Design:
A quasi-randomized control trial.
MethodsTo measure the impact of interventions, modeling with the ML method was performed on the data of a quasi-randomized control trial. The data included the information of 311 office workers (aged 32.04±5.34). Method neighborhood component analysis (NCA) was used to measure the effect of factors affecting WMSDs, and then support vector machines (SVMs) and decision tree algorithms were utilized to classify the decrease or increase of disorders.
ResultsThree classified models were designed according to the follow-up times of the field study, with accuracies of 86.5%, 80.3%, and 69%, respectively. These models could estimate most influencer factors with acceptable sensitivity. The main factors included age, body mass index, interventions, QWL, some subscales, and several psychological factors. Models predicted that relative absenteeism and presenteeism were not related to the outputs.
ConclusionIn this study, the focus was on disorders in the neck, and the obtained models revealed that individual and management interventions can be the main factors in reducing WMSDs in the neck. Modeling with ML methods can create a new understanding of the relationships between variables affecting WMSDs.
Keywords: Ergonomics, Model, Machine Learning, Support Vector Machine -
Purpose
Interoceptions are a combination of sensation, integration, and interpretation of internal bodily signals. Interoceptions are bidirectionally related to the human being mental and physiological health, and well-being. Sleep and different interoceptive modalities are proven to share common relations.Heartbeat Evoked Potential (HEP) is known as a robust readout to interoceptive processes. In this study, we focused on the relation between HEP modulations and sleep-related disorders.
Materials and MethodsWe investigated four different sleep-related disorders, including insomnia, rapid eye movement behavior disorder, periodic limb movements and nocturnal frontal lobe epilepsy, and provided HEP signals of multiple Electroencephalogram (EEG) channels over the right hemisphere to compare these disorders with the control group. Here, we investigated and compared the results of 35 subjects, including seven subjects for the control group and seven subjects for each of above-mentioned sleep disorders.
ResultsBy comparing HEP responses of the control group with sleep-related patients’ groups, statistically significant HEP differences were detected over right hemisphere EEG channels, including FP2, F4, C4, P4, and O2 channels. These significant differences were also observed over the grand average HEP amplitude activity of channels over the right hemisphere in the sleep-related disorders as well.
ConclusionOur results between the control group and groups of patients suffering from sleep-related disorders demonstrated that during different stages of sleep, HEPs show significant differences over multiple right hemisphere EEG channels. Interestingly, by comparing different sleep disorders with each other, we observed that each of these HEP differences’ patterns over specific channels and during certain sleep stages bear considerable resemblances to each other.
Keywords: Support Vector Machine, Random Forest Classifier, Deep Stacked Auto-Encoder, Xgboost Classifierextreme Gradient Boost Classifier, Classification, Event Detection -
Purpose
Independent Component Analysis (ICA) decomposition is a commonly used technique for eye blink artifact detection from Electroencephalogram (EEG) signals. Feature extraction from the decomposed ICs is a prime step for blink detection. This paper presents a new model of eye blink detection for ICA based approach, where the decomposed ICs are projected to their corresponding EEG segments (ReEEG), and feature extraction is performed on the ReEEG instead of the IC. ReEEG represents the eye blink activity more distinctly. Hence, ReEEG-based feature extraction is more potential in detecting eye blink artifacts than the traditional IC-based feature extraction.
Materials and MethodsThis paper employs twelve EEG features to substantiate the superiority of ReEEG over IC. Support Vector Machine (SVM) is used as a classifier. A dataset, having 2638 clinical EEG epochs, is employed. All the considered twelve features are extracted from ReEEG and fed to SVM one at a time for blink detection. Then the obtained results are compared with an IC-based model with the same features.
ResultsThe comparison reveals the success of the proposed ReEEG-based blink detection approach over the traditional IC-based approach. Accuracy, precision, recall, and f1 scores are calculated as performance measuring metrics. For almost all features, ReEEG-based approach achieved up to 12.25% higher accuracy, 24.95% higher precision, 13.49% higher recall, and 12.89% higher f1 score than the IC-based traditional method.
ConclusionThe proposed model will be useful for researchers in dealing with the eye blink artifacts of EEG signals with more efficacy.
Keywords: Electroencephalogram, Eye Blink Artifact, Independent Component Analysis, Support Vector Machine, Feature Extraction -
مقدمه
امروزه یکی از شایع ترین علت مرگ بزرگسالان در سراسر دنیا سکته قلبی می باشد. طبق اعلام وزارت بهداشت، درمان و آموزش پزشکی، 11 تا 15 درصد مرگ و میرها در کشور ناشی از سکته قلبی است و در جهان، ایران بالاترین آمار مرگ ناشی از بیماری قلبی را دارا می باشد. تخمین زده شده که در سال 2022 ، مرگ و میر ناشی از این بیماری ها به 20 میلیون نفر افزایش یابد؛ بنابراین پیش بینی کردن این بیماری از جمله مباحث چالش برانگیز در مبحث پزشکی می باشد و امروزه اکثر سیستم های پیش بینی با استفاده از الگوریتم های هوش مصنوعی و یادگیری ماشین به وجود آمده اند.
روشپژوهش حاضر از نوع کاربردی و توصیفی است، که در سال 1401 با استفاده از اطلاعات 600 نفر از افراد مراجعه کننده به بیمارستان پیمانیه و مطهری شهرستان جهرم انجام شده است. در این پژوهش داده ها بر اساس منابع موجود از هر دو بیمارستان جمع آوری شدند. به منظور پیاده سازی و ارزیابی نتایج از زبان برنامه نویسی متلب استفاده شده است.
نتایجپارامترهای به کاررفته در این پژوهش جزء پارامترهای دسته بندی می باشد که شامل: نرخ دسته بندی، صحت، فراخوان و F سنجش می باشند که به ترتیب مقادیر 90/7، 90/2، 91/5 و 90/8 به دست آمده است.
نتیجه گیرینتایج نشان می دهند که مدل پیشنهادی قادر خواهد بود که با درصد بالایی احتمال وقوع سکته را پیش بینی کند
کلید واژگان: سکته قلبی, تشخیص بیماری, مدل هوشمند, یادگیری ماشین, ماشین بردار پشتیبانIntroductionToday, heart attack is one of the most common causes of death in adults all over the world. According to the announcement of the Ministry of Health, Treatment, and Medical Education, 11 to 15 percent of deaths in Iran are caused by heart attacks, and in the world, Iran has the highest number of deaths due to heart disease in 2022. It has been estimated that deaths from these diseases will increase to 20 million people. Therefore, predicting this disease is one of the most challenging topics in the medical field, and today most prediction systems are created using artificial intelligence and machine learning algorithms.
MethodThis applied and descriptive research was conducted in 2022 using the information of 600 people who referred to Peymaniyeh and Motahari hospitals in Jahrom city. In this research, data were collected based on the available sources from both hospitals. To implement and evaluate the results, MATLAB programming language was used.
ResultsThe parameters used in this research are among the classification parameters, including classification rate, precision, recall, and F-measure, which were obtained as 90.7, 90.2, 91.5, and 90.8, respectively.
ConclusionThe results show that the proposed model will be able to predict the probability of stroke with a high percentage.
Keywords: Heart attack, Disease prediction, Intelligent model, Machine learning, Support vector machine -
Introduction
Machine learning, especially deep convolutional neural networks (DCNNs), is a popular method for computerizing medical image analysis. This study aimed to develop DCNN models for histopathology image classification utilizing transfer learning.
Material and MethodsWe utilized 16 different pre-trained DCNNs to analyze the histopathology images from the animal diagnostic laboratory (ADL) database. During the image preprocessing stage, we applied two methods. The first method involved subtracting the mean of ImageNet images from all images. The second method involved subtracting the mean of histopathology training images from all images. Next, in the 16 pre-trained networks, feature extraction was done from their final six layers, and the features extracted from each layer were fed separately into the linear and non-linear support vector machine (SVM) for classification.
ResultsThe results obtained from the ADL database show that the classification rate in lung tissue images is much better than that of the kidney and spleen. For example, the lowest detection rate in non-linear SVM for lung tissue is 14.96%, almost close to the highest accuracy in kidney and spleen tissue. The classification accuracy of the spleen images is better than that of the kidneys, with only a slight difference. In linear SVM on lung images, ResNet101 obtained the most accurate result with a value of 99.56%, followed by ResNet50, ResNet152, VGG_16, and VGG_19. In non-linear SVM on lung tissue images, the ResNet101 network with 99.65% and ResNet50 with 99.21%, followed by ResNet152, VGG_16, and VGG_19 obtained the highest detection rate.
ConclusionThe classification results obtained from different methods on the ADL (including kidney, spleen, and lung histopathology images) database, confirmed the validity of transferring knowledge between non-medical and medical histopathology images. Additionally, it demonstrates the success of combining classifiers trained on deep features. This research obtained higher accuracy in the ADL database than the works done.
Keywords: Deep Learning, Transfer learning, Support Vector Machine -
مقدمه
امروزه با شیوع گسترده سرطان و افزایش مرگ و میر ناشی از آن، راه های موثر برای درمان سرطان از اهمیت بالایی برخوردار است. رگ زایی غیرطبیعی، یکی از ویژگی های مشترک انواع مختلف سرطان شناخته شده است. تا کنون مهار مسیر سیگنالینگ گیرنده دوم فاکتور رشد اندوتلیال عروق، به دلیل نقش پیش رگ زایی آن ببسیار مورد توجه قرار گرفته است. از اینرو، یافتن مدل های محاسباتی قابل اطمینان برای شناسایی مهارکننده ها می تواند در کاهش زمان و هزینه موثر باشد. هدف از این مطالعه به کارگیری روش ماشین بردار پشتیبان جهت طبقه بندی ترکیبات در دو گروه مهارکننده و غیرمهارکننده می باشد.
روش بررسیبه منظور پیاده سازی مدل یادگیری ماشین، لیگاندهای مورد مطالعه در این پژوهش از پایگاه داده https://www.bindingdb.org استخراج گردید و پس از گذراندن پیش پردازش های لازم برخی روش های انتخاب ویژگی مبتنی بر فیلتر و تعبیه شده مورد استفاده قرار گرفته شد. پس از استخراج توصیفگرها از داده ها، با استفاده از الگوریتم انتخاب ویژگی مبتنی بر همبستگی ابعاد داده کاهش یافته است تا بدین طریق از بیش برازش مدل جلوگیری شود. برای طبقه بندی از مدل ماشین بردار پشتیببان به همراه کرنل های Radial Basis Function (RBF)، Polynomial، Sigmoid و Linear استفاده شده است.
نتایجپیاده سازی مدل ماشین بردار پشتیبان با کرنل RBF به همراه روش انتخاب ویژگی مبتنی بر همبستگی صحت بالاتری به میزان (0/008 (P=82/4%) نسبت به سایر روش های انتخاب ویژگی بکار گرفته شده در این مطالعه به همراه داشته است.
نتیجه گیریمشاهدات بیانگر آن است که روش انتخاب ویژگی مبتنی بر همبستگی، نسبت به سایر روش های به کار گرفته شده در این مطالعه از صحت بالاتری برخوردار است.
کلید واژگان: گیرنده دوم فاکتور رشد اندوتلیال عروق, رابطه کمی ساختار فعالیت, ماشین بردار پشتیبان, رگ زاییJournal of Shaeed Sdoughi University of Medical Sciences Yazd, Volume:31 Issue: 10, 2024, PP 7108 -7116IntroductionIn our current era, the prevalence of cancer and its associated mortality rates have become a pressing concern. As such, finding effective methods for treating cancer has become a matter of significant importance. Abnormal angiogenesis is one of the common characteristics of different types of cancer. So far, the inhibition of vascular endothelial growth factor receptor 2 signaling pathway has received much attention due to its pro-angiogenic role. Therefore, finding reliable computational models to identify inhibitors can be effective in reducing time and cost. The purpose of this study was to use the support vector machine method to classify compounds into two inhibitory and non-inhibitory groups.
MethodsIn order to implement the machine learning model, the ligands studied in this research were extracted from the https://www.bindingdb.org database and after passing the necessary pre-processing, some filter-based and embedded feature selection methods were used. After extracting the descriptors from the data, using the feature selection algorithm based on correlation, the dimensions of the data have been reduced in order to avoid overfitting the model. The classification task utilized a support vector machine model, employing various kernels such as Radial Basis Function (RBF), Polynomial, Sigmoid, and Linear.
ResultsThe implementation of the support vector machine model with the RBF kernel along with the feature selection method based on correlation has resulted in a higher accuracy of 82.4% (P=0.008) compared to other feature selection methods used in this study.
ConclusionObservations indicate that the correlation-based feature selection method is more accurate than other methods used in this study.
Keywords: Vascular Endothelial Growth Factor Receptor II, Quantitative Structure-Activity Relationship, Support Vector Machine, Angiogenesis -
زمینه و هدفبیماری عروق کرونر شایع ترین شکل بیماری قلبی عروقی است و اغلب باعث انفارکتوس میوکارد می شود. سالانه میلیاردها دلار خسارت مالی و میلیون ها مرگ در سراسر جهان به بار می آورد. روش استاندارد برای تشخیص بیماری های قلبی عروقی آنژیوگرافی است که تهاجمی و خطرناک است. سیستم یادگیری ماشین به طور گسترده ای به عنوان یک رویکرد سریع، مقرون به صرفه و غیر تهاجمی برای تشخیص بیماری های قلبی عروقی استفاده شده است. بنابراین، هدف از این تحقیق استفاده از الگوریتم ماشین بردار پشتیبان برای پیش بینی بیماری عروق کرونر قلب در زنان میانسال فعال بود.روش هادر این مطالعه، از سوابق پزشکی 372 زن میانسال مبتلا به بیماری عروق کرونر که در دو بیمارستان منتخب طی سال های 1400-1395 بستری شده بودند استفاده شد. از الگوریتم ماشین بردار پشتیبان برای تشخیص بیماری عروق کرونر استفاده شد. برای تجزیه و تحلیل داده ها از نرم افزار MATLAB در سطح معنی داری 0/05 استفاده شد.یافته هایافته ها نشان داد که با استفاده از سوابق پزشکی حاوی 14 ویژگی مشترک، مربوط به اطلاعات آنتروپومتری، تست های تشخیصی، نتیجه آنژیوگرافی و فعالیت بدنی، الگوریتم ماشین بردار پشتیبان می تواند با دقت 70 درصد و صحت 76 درصد بیماری عروق کرونر را پیش بینی کند.نتیجه گیریاستفاده از رویکرد یادگیری ماشین توانایی پیش بینی حضور بیماری عروق کرونر را با دقت و حساسیت بالا فراهم میکند. بنابراین به پزشکان اجازه میدهد تا درمان پیشگیرانه به موقع را در بیماران مبتلا به بیماری عروق کرونر انجام دهند.کلید واژگان: عروق کرونر, الگوریتم, ماشین بردار پشتیبان, میانسالUsing Support Vector Machine Algorithm to Predict Coronary Heart Disease in Active Middle-aged WomenJournal of Military Medicine, Volume:25 Issue: 5, 2023, PP 2016 -2023Background and AimCoronary artery disease is the most common form of cardiovascular disease, and it frequently causes myocardial infarction. It causes billions of dollars in property damage and millions of deaths worldwide every year. The standard method for diagnosing cardiovascular disease is angiography, which is invasive and dangerous. A machine learning system has been widely used as a fast, cost-effective, and non-invasive approach to the diagnosis of cardiovascular disease. Therefore, the purpose of this research was to use a support vector machine algorithm to predict coronary heart disease in active middle-aged women.MethodsIn this study, the medical records of 372 middle-aged women with coronary artery disease who were hospitalized in two selected hospitals during 2015-2016 were used. A support vector machine algorithm was used to diagnose coronary artery disease. MATLAB software was used for data analysis at a significance level of 0.05.ResultsThe results showed that by using medical records containing 14 common features, related to anthropometric information, diagnostic tests, angiography results, and physical activity, the support vector machine algorithm can detect vascular diseases with 70% accuracy and 76% precision.ConclusionThe use of a machine learning approach provides the ability to predict the presence of coronary artery disease with high accuracy and sensitivity. Therefore, it allows doctors to provide timely preventive treatment in patients with coronary artery disease.Keywords: Coronary Artery, Support Vector Machine, Algorithm, Middle-aged
-
BackgroundHypertension is associated with severe complications, and its detection is important to provide early information about a hypertension event, which is essential to prevent further complications.ObjectiveThis study aimed to investigate a strategy for hypertension detection without a cuff using parameters of bioelectric signals, i.e., Electrocardiogram (ECG), Photoplethysmogram (PPG,) and an algorithm of Swarm-based Support Vector Machine (SSVM).Material and MethodsThis experimental study was conducted to develop a hypertension detection system. ECG and PPG bioelectrical records were collected from the Medical Information Mart for Intensive Care (MIMIC) from normal and hypertension participants and processed to find the parameters, used for the inputs of SSVM and comprised Pulse Arrival Time (PAT) and the characteristics of PPG signal derivatives. The SSVM was n Support Vector Machine (SVM) algorithm optimized using particle swarm optimization with Quantum Delta-potential-well (QDPSO). The SSVMs with different inputs were investigated to find the optimal detection performance.ResultsThe proposed strategy was performed at 96% in terms of F1-score, accuracy, sensitivity, and specificity with better performance than the other methods tested and methods and also could develop a cuff-free hypertension monitoring system.ConclusionHypertension using SSVM, ECG, and PPG parameters is acceptably performed. The hypertension detection had lower performance utilizing only PPG than both ECG and PPG.Keywords: Photoplethysmography, Support Vector Machine, Medical Informatics
-
Background
In current study, we aimed to investigate if Attention Deficit Hyperactivity Disorder (ADHD) is better to be categorized among behavioral or neurodevelopmental disorders, based on some familial and environmental factors.
MethodsWe conducted correlation analysis to identify psychiatric disorders in the dataset which have an important impact on ADHD. Also, we used machine learning-based approaches combined with a feature selection algorithm to cluster and classify ADHD as a behavioral or neurodevelopmental disorder.
ResultsModel evaluation showed that ADHD is clustered in the group of behavioral disorders with the accuracy of 78%. Furthermore, Support Vector Machine (SVM) classified ADHD as a behavioral disorder with the accuracy of 72.66% and as a neurodevelopmental disorder with the accuracy of 60.07%.
ConclusionIn sum, we can say that our findings support categorizations systems like HiTOP in comparison to DSM-5. However, as biological factors were not included in our analysis, it should be considered with caution and examined in future researches.
Keywords: Attention Deficit Disorder with Hyperactivity, Biological factors, Diagnostic, statistical manual of mental dis-orders, Neurodevelopmental disorders, Support vector machine -
Atrial fibrillation (AF) is a life threatening disease and can cause stroke, heart failure, and sometimes death. To reduce the rate of mortality and morbidity due to increased prevalence of AF, early detection of the same becomes a prior concern. Traditional machine learning (TML) algorithms and ensemble machine learning (EML) algorithms are proposed to detect AF in this article. The performances of both these methods are compared in this study. Methodology involves computation of RR interval features extracted from electrocardiogram and its classification into: normal, AF, and other rhythms. TML techniques such as Classification and Regression Tree, K Nearest Neighbor, C4.5, Iterative Dichotomiser 3, Support Vector Machine and EML classifier such as Random Forest (RF), and Rotation Forest are used for classification. The proposed method is evaluated using PhysioNet challenge 2017. During the tenfold cross validation, it is observed that RF classifier provided good classification accuracy of 99.10% with area under the curve of 0.998. Apart from contributing a new methodology, the proposed study also experimentally proves higher performance with ensemble learning method, RF. The methodology has many applications in health care management systems including defibrillators, cardiac pacemakers, etc.
Keywords: Atrial fibrillation, area under the curve, C4.5, classification, regression tree, Discrete wavelet transform, Electrocardiogram, Iterative Dichotomiser 3, K‑NN, Random Forest, rotation forest, Support Vector Machine -
Today, artificial intelligence is considered a powerful tool that can help physicians identify and diagnoseand predictdiseases. Gastric cancer has been the fourth most common malignancyand the second leading cause of cancer mortality in the world. Thus, timely diagnosis of this type of cancer could effectively control it. Thispaper compares AI(artificial intelligence)algorithms in diagnosing and predicting gastric cancer based on types of AI algorithms, sample size, accuracy,sensitivity, and specificity. This narrative-review paper aims to explore AI algorithms in diagnosingand predictinggastric cancer.To achieve this goal, we reviewed English articles published between 2011 and 2021 in PubMed and Science direct databases.According to the reviews conducted on the published papers, the endoscopic method has been the most used method to collect and incorporate samples into designed models. Also, the SVM(support vector machine), convolutional neural network (CNN), and deep-type CNN havebeen used the most; therefore,we propose the usage of these algorithms in medical subjects, especially in gastric cancer.
Keywords: Artificial Intelligence, Neural Networks, Computer, Stomach Neoplasms, Support Vector Machine -
Introduction
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool, which makes the processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate.
MethodsIn this paper, a hybrid approach based on deep features extracted from wavelet CNNs (WCNNs) weighted layers and multiclass support vector machine (MSVM) was proposed to improve the recognition of emotional states from electroencephalogram (EEG) signals. First, EEG signals were preprocessed and converted to Time-Frequency (T-F) color representation or scalogram using the continuous wavelet transform (CWT) method. Then, scalograms were fed into four popular pre-trained CNNs, AlexNet, ResNet-18, VGG-19, and Inception-v3 to fine-tune them. Then, the best feature layer from each one was used as input to the MSVM method to classify four quarters of the valence-arousal model. Finally, the subject-independent leave-one-subject-out criterion was used to evaluate the proposed method on DEAP and MAHNOB-HCI databases.
ResultsResults showed that extracting deep features from the earlier convolutional layer of ResNet-18 (Res2a) and classifying using the MSVM increased the average accuracy, precision, and recall by about 20% and 12% for MAHNOB-HCI and DEAP databases, respectively. Also, combining scalograms from four regions of pre-frontal, frontal, parietal, and parietal-occipital and two regions of frontal and parietal achieved the higher average accuracy of 77.47% and 87.45% for MAHNOB-HCI and DEAP databases, respectively.
ConclusionCombining CNN and MSVM increased the recognition of emotion from EEG signals and the results were comparable to state-of-the art studies.
Keywords: Emotion recognition, Electroencephalogram, Continuous wavelet transform, Convolutional neural network, Feature extractor, Support vector machine -
Introduction
It could be beneficial to accelerate the hospitalization of patients with the identified clinical risk factorsof intensive care unit (ICU) admission, in order to control and reduce COVID-19-related mortality. This study aimedto determine the clinical risk factors associated with ICU hospitalization of COVID-19 patients.
MethodsThe currentresearch was a cross-sectional study. The study recruited 7182 patients who had positive PCR tests between February 23,2020, and September 7, 2021 and were admitted to Afzalipour Hospital in Kerman, Iran, for at least 24 hours. Their demo-graphic characteristics, underlying diseases, and clinical parameters were collected. In order to analyze the relationshipbetween the studied variables and ICU admission, multiple logistic regression model, classification tree, and supportvector machine were used.
ResultsIt was found that 14.7 percent (1056 patients) of the study participants were admit-ted to ICU. The patients’ average age was 51.25±21 years, and 52.8% of them were male. In the study, some factors suchas decreasing oxygen saturation level (OR=0.954, 95%CI: 0.944-0.964), age (OR=1.007, 95%CI: 1.004-1.011), respiratorydistress (OR=1.658, 95%CI: 1.410-1.951), reduced level of consciousness (OR=2.487, 95%CI: 1.721-3.596), hypertension(OR=1.249, 95%CI: 1.042-1.496), chronic pulmonary disease (OR=1.250, 95%CI: 1.006-1.554), heart diseases (OR=1.250,95%CI: 1.009-1.548), chronic kidney disease (OR=1.515, 95%CI: 1.111-2.066), cancer (OR=1.682, 95%CI: 1.130-2.505),seizures (OR=3.428, 95%CI: 1.615-7.274), and gender (OR=1.179, 95%CI: 1.028-1.352) were found to significantly affectICU admissions.
ConclusionAs evidenced by the obtained results, blood oxygen saturation level, the patient’s age, andtheir level of consciousness are crucial for ICU admission.
Keywords: COVID-19, intensive care units, logistic models, decision trees, support vector machine -
مقدمه
زردی یکی از مشکلات شایع دوران نوزادی است که حدود 60 درصد از نوزادان رسیده و 80 درصد از نوزادان نارس در هفته اول زندگی به آن مبتلا می شوند. مطالعه حاضر، به منظور ایجاد سیستمی برای پیش بینی زردی نوزادان در 24 تا 72 ساعت اول پس از تولد با بکارگیری الگوریتم ماشین بردار پشتیبان انجام شد.
روش هااین مطالعه از نوع کاربردی -توسعه ای بود که با روش کمی انجام شد. ابتدا بر اساس بررسی متون، پرسشنامه ای حاوی عوامل موثر در پیش بینی زردی نوزادان طراحی شد. تحلیل داده ها با استفاده از آمار توصیفی انجام شد و عواملی در مدل لحاظ شد که حداقل 50 درصد از متخصصان آن را ضروری تشخیص دادند. سپس، داده های 1178 نوزاد متولدشده در بیمارستان لولاگر تهران از پرونده زایمان استخراج شد و جهت پیش بینی زردی نوزادان، از چندین الگوریتم یادگیری ماشین استفاده شد که در این میان با توجه به نتایج حاصله جهت مدلسازی نهایی، الگوریتم ماشین بردار پشتیبان استفاده و با سنجه های مختلف ارزیابی گردید.
یافته هایافته های حاصل از این پژوهش نشان داد که مدل پیشنهادی با الگوریتم SVMبه دلیل ایجاد فاصله بین کلاس ها به عنوان بهترین خروجی انتخاب شد. بنابراین، مدل نهایی الگوریتم SVM با استفاده از هسته گوسی و با سیگمای 1/2360605 ایجاد شد که 30 درصد از نمونه ها (354 مورد) آزمون شدند و از این تعداد 321 مورد به درستی پیش بینی شد. در این مدلسازی سنجه های دقت، سطح زیر نمودار ROC و معیار F1 به ترتیب 92/7 درصد، 93 درصد و 88 درصد بدست آمد.
نتیجه گیریاستفاده از SVM در ایجاد سیستم پیش بینی زردی نوزادان می تواند به پزشکان در پیش بینی به موقع زردی نوزادان کمک نماید و امکان انجام اقدامات پیشگیری و جلوگیری از خطرات احتمالی ناشی از زردی نوزادان را فراهم نماید.
کلید واژگان: زردی, نوزادان, ماشین بردار پشتیبانIntroductionJaundice is one of the most common problems in the neonatal period, affecting about 60% of full-term and 80% of premature infants in their first week of life. The present study aimed to develop a system for predicting neonatal jaundice within the first 24 to 72 hours post-delivery by using the Support Vector Machine (SVM) algorithm.
MethodsThis applied-developmental study employed a quantitative method. First, based on a literature review, a questionnaire containing effective factors for predicting jaundice in newborns was designed. Data analysis was performed using descriptive statistics, and factors that were recognized as necessary by at least 50% of the experts were included in the model. Then, data from 1178 newborns delivered at Lolagar hospital in Tehran were extracted from birth records, and several machine learning algorithms were used to predict neonatal jaundice.
ResultsThe findings of this research showed that the proposed model based on the SVM algorithm is the best output due to the distance between classes. Therefore, the final model of the SVM algorithm was created using the Gaussian kernel, with a sigma value of 1.2360605. Thirty percent of the samples (354 cases) were tested, and 321 cases were correctly predicted. In the proposed SVM model, parameters such as precision, the area under the Receiver Operating Characteristic (ROC), and F1 score were 92.7%, 93%, and 88% respectively.
ConclusionIncorporating SVM into a system for predicting jaundice in newborns can aid doctors with timely prediction of jaundice in newborns and provide the possibility of taking preventive measures and preventing possible risks caused by jaundice in newborns.
Keywords: Jaundice, Neonatal, Support Vector Machine -
Introduction
Estimating the probability of obstructive coronary artery disease in patients undergoing noncoronary cardiac surgery should be considered compulsory. Our study sought to evaluate the prevalence of obstructive coronary artery disease in patients undergoing valvular heart surgery and to utilize predictive methodology of concomitant obstructive coronary artery disease in these patients.
MethodsThe retrospective study cohort was derived from a tertiary care hospital registry of patients undergoing coronary angiogram prior to valvular heart operations. Decision tree, logistic regression, and support vector machine models were built to predict the probability of the appearance of obstructive coronary artery disease. A total of 367 patients from 2016 to 2019 were analyzed.
ResultsThe mean age of the study population was 57.3±9.3 years, 45.2% of the patients were male. Of 367 patients, 76 (21%) patients had obstructive coronary artery disease. The decision tree, logistics regression, and support vector machine models had an area under the curve of 72% (95% CI: 62% - 81%), 67% (95% CI: 56% - 77%), and 78% (95% CI: 68% - 87%), respectively. Multivariate analysis indicated that hypertension (OR 1.98; P=0.032), diabetes (OR 2.32; P=0.040), age (OR 1.05; P=0.006), and typical angina (OR 5.46; P<0.001) had significant role in predicting the presence of obstructive coronary artery disease.
ConclusionOur study revealed that approximately one-fifth of patients who underwent valvular heart surgery had concomitant obstructive coronary artery disease. The support vector machine model showed the highest accuracy compared to the other model.
Keywords: Obstructive Coronary Artery Disease, Valvular Heart Surgery, Support Vector Machine, Logistic Regression, Decision Tree -
Investigation of Factors Affecting Choice of Medical Travel Destination Using Data Mining TechniquesInternational Journal of Travel Medicine and Global Health, Volume:11 Issue: 1, Winter 2023, PP 186 -193IntroductionMedical tourism, one of the most profitable industries, has been growing rapidly in recent years. Especially Turkey, which has a high ranking among medical travel destinations, has some advantages that can become preferable for international patients. This study is among the first few studies which examine affecting factors in patients’ medical travel destination choices with Data Mining techniques.MethodsThe data were obtained from patients who came to Ankara from abroad for treatment in May 2015 through a ques-tionnaire. Cross-industry Standard Process for data mining, known as the CRISP-DM method, is used in this study. After cleaning out the missing data, the models were created using classification algorithms.ResultsModels including Generalized Linear Model, Deep Learning, Decision Tree, Random Forest, Gradient Boosted Trees, and Support Vector Machine (SVM) were compared, and SVM reached the best performance with 0.2% Relative Er-ror, 0.014 Root Mean Squared Error and 0.998 Correlation. As a result of the SVM model, effective attributes in patients’ satisfaction level include low price advantage, advertisement, doctors with high-quality education, trained assistant staff, relatives living in Turkey, and high technology of medical equipment, respectively.ConclusionSpecial attention should be paid to these factors in developing plans and policies for the health tourism sector. However, the importance of related socio-demographic variables was indicated in detail. Eventually, some suggestions were presented to improve the weaknesses in the health tourism sector.Keywords: health tourism, Medical Travel Destination, Data mining, Support Vector Machine, Turkey
-
هدف
مشکلات قلبی عروقی یکی از شایع ترین علل مرگ و میر در سراسر جهان است. استفاده از روش های داده کاوی برای ایجاد مدل های پیش بینی برای شناسایی افراد در معرض خطر برای جلوگیری از عوارض ناشی از بیماری های قلبی عروقی بسیار موثر خواهد بود. انگیزه اصلی این تحقیق پیش بینی احتمال عفونت در افراد مبتلا به بیماری عروق کرونر قلب و فیبریلاسیون دهلیزی با استفاده از الگوریتم های ماشین بردار پشتیبان، شبکه عصبی و درخت تصمیم بر اساس عوامل موثر بر بیماری است.
روش بررسیاین پژوهش از نوع تحلیلی است و پایگاه داده آن شامل 300 رکورد می باشد. اطلاعات مورد نیاز این مطالعه در سال 1400 با استفاده از پرونده بیماران بستری در بیمارستان های چمران و خورشید اصفهان جمع آوری شد. برای تجزیه و تحلیل آن ها، اطلاعات شامل بخش های آزمایشگاهی، دموگرافیک و سابقه خانوادگی است که از روش کریسپ، فرآیندهای استاندارد صنعت متقابل برای داده کاوی (Cross Industry Standard Process for Data Mining; CRISP) استفاده می شود. همچنین در بخش مدل سازی از درخت های تصمیم، شبکه های عصبی و ماشین های بردار پشتیبان استفاده می شود.
یافته هابر طبق نتایج بدست آمده، حساسیت و ویژگی در الگوریتم داده کاوی شبکه عصبی به ترتیب (11/5،71/87)، در الگوریتم درخت تصمیم (92/85 ، 80) و در ماشین بردار پشتیبان (88/88، 75) بوده اند. لذا الگوریتم درخت تصمیم دارای عملکرد بهتری برای پیش بینی احتمال بیماری های قلبی و عروق کرونر و فیبریلاسیون دهلیزی است. همچنین با توجه به مطالعات انجام شده مشخص شد که استرس، اضافه وزن، فشار خون بالا و نوع شغل بیشترین تاثیر را در بروز بیماری های قلبی و عروق کرونر و آریتمی های قلبی داشتند.
نتیجه گیریدر مطالعه حاضر درخت تصمیم دارای بالاترین عملکرد است لذا می توان از آن برای تعیین احتمال مشکلات کرونری قلب و عروق و فیبریلاسیون دهلیزی استفاده کرد.
کلید واژگان: یماری قلبی, بیماری عروق کرونر, آریتمی قلبی, شبکه عصبی, ماشین بردار پشتیبان, درخت تصمیمPurposeCardiovascular disease is one of the most important causes of death worldwide. Using data mining methods to create predictive models to identify people at risk to prevent complications from cardiovascular diseases will be very effective. The aim of this research is to predict the probability of infection in people with coronary heart disease and atrial fibrillation using support vector machine, neural network and decision tree algorithms based on factors affecting the disease.
MethodsThis analytical research includes 300 records. The information required for this study was collected in 1400 using the records of patients admitted to Chamran and Khurshid hospitals in Isfahan. For data analysis, the information includes laboratory, demographic and family history sections using the CRISP method, the Cross Industry Standard Process for Data Mining (CRISP). Decision trees, neural networks and support vector machines are also used in the modeling section.
ResultsThe sensitivity and specificity in the neural network data mining algorithm are 87.5 and 71.11 respectively, 92.85 and 80 in the decision tree algorithm and 88.88 and 75 in the support vector machine. Therefore, the decision tree algorithm has a better performance for predicting the probability of heart and coronary artery diseases and atrial fibrillation. Also it was found that stress, high BMI, high blood pressure and type of job had the greatest effect on the occurrence of heart and coronary artery diseases and cardiac arrhythmias.
ConclusionIn the current study, the decision tree has the highest performance, so it can be used to determine the probability of coronary heart and vascular problems and atrial fibrillation.
Keywords: Heart disease, Coronary Artery Disease, Cardiac Arrhythmia, Neural Network, Support vector machine, Decision tree -
پیش زمینه و هدف
سرطان مهاجم دهانه رحم دومین سرطان شایع در بین زنان سراسر جهان است. روش های بسیاری بر مبنای هوش مصنوعی برای تشخیص دقیق نرمال بودن یا سرطانی بودن سلول ها و کمک به فرد متخصص در تشخیص هر چه بهتر و سریع تر سرطان ارایه شده است. هدف از انجام پژوهش حاضر، ارایه یک روش جدید و کارآمد در تشخیص سلول های طبیعی از غیرطبیعی بود.
مواد و روش هااین یک مطالعه توصیفی بود. برای ایجاد پایگاه داده، 2600 تصویر از 150 لام سیتولوژی تهیه گردید. تصاویر توسط متخصصین مورد ارزیابی، شناسایی و طبقه بندی قرار گرفتند. جهت ارزیابی روش پیشنهادی در پایگاه داده تهیه شده، از مجموع 2600 تصویر تهیه شده 1300 تصویر برای آموزش سیستم و 1300 تصویر برای آزمون در نظر گرفته شد. در این پژوهش جهت ارزیابی روش پیشنهادی و مقایسه با سایر روش ها، از نرم افزار MATLAB نسخه R2014b استفاده شده است.
یافته هاجهت استخراج ویژگی های سلول ها در هر سه مرحله از استخراج گرهای مورفولوژیکی و برای طبقه بندی به ترتیب از ماشین بردار پشتیبان، رگرسیون لجستیک و طبقه بندی 5/4C استفاده شد. دقت روش پیشنهادی در تشخیص سلول ها دهانه رحم در دو گروه نرمال و غیرنرمال 23/98 درصد بود که نسبت به سایر روش ها بیشتر بوده و همچنین نسبت مثبت کاذب با عدد 92/0 درصد و منفی کاذب 85/0 درصد نسبت به سایر روش ها کمتر است.
بحث و نتیجه گیریروش پیشنهادی می تواند با تشخیص زودهنگام سرطان با دقت و حساسیت بالا و نتایج کاذب کمتر، کمک چشمگیری به تشخیص در حیطه پزشکی نماید و در بسیاری از موارد در درمان به موقع بیماران و جلوگیری از مرگ و میر آن ها تاثیر بسزایی داشته باشد.
کلید واژگان: سرطان دهانه رحم, الگوی دودویی محلی توسعه یافته, ماشین بردار پشتیبانBackground & AimsInvasive cervical cancer is the second most common cancer among women worldwide. There are many methods based on artificial intelligence to accurately diagnose the normality or cancer of the cells, which help the specialist to diagnose cancer cells better and faster. This study aimed to present a new and efficient method for automatically detecting normal and abnormal cells.
Material & MethodThis was a descriptive study. In order to create the database, 2600 images were prepared from 150 cytological slides. Images were evaluated, identified, and classified by specialists. In order to evaluate the proposed method in the prepared database, out of 2600 images prepared, 1300 images were considered for system training and 1300 images for testing. This research used MATLAB software version R2014b to evaluate and compare the proposed method with other methods.
ResultsMorphological extractors were used to extract the characteristics of the cells in all three stages, and support vector machine, logistic regression and C4.5 classifications were used for classification, respectively. The accuracy of the proposed method in detecting cervical cells in both normal and abnormal groups was 98.23%, which is more than other methods, and also the ratio of false positives (0.92%) and false negatives (0.85%) is lower than other methods.
ConclusionThe proposed method can help significantly in the field of diagnosis in medicine with the early detection of cancer and, in many cases, can be very effective in timely treatment of the patients and prevention of their mortality.
Keywords: Cervical Cancer, Locally Developed Binary Pattern, Support Vector Machine
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.