بهینه یابی سبد مصرف انرژی و خوشه بندی ساختمان های مسکونی با بهبود شبکه عصبی فازی با اوزان و معماریAHP
نویسنده:
چکیده:
ساختمان های مسکونی ایران، مطابق آمارهای موجود، بزرگترین مصرف کننده انرژی این کشور می باشند؛ فاکتورهای متعدد تاثیرگذار بر رفتار مصرف انرژی در ساختمان های مسکونی، مسئله پیش بینی و ممیزی مصرف انرژی را به چالشی مهم در موسسات بهینه سازی مصرف تبدیل نموده اند. از این رو مدیران در تلاشند تا با بهره گیری از تکنیک های مناسب، فرآیند ممیزی و تعیین برچسب انرژی ساختمان های مسکونی را بهبود بخشند.
هدف پژوهش حاضر، با توجه به ضرورت مدیریت انرژی، مدل سازی، پیش بینی و خوشه بندی مصرف انرژی ساختمان های مسکونی، جهت ممیزی و تعیین برچسب انرژی این ساختمان ها می باشد. از این رو این پژوهش، با تلفیق شبکه عصبی فازی (FNN) و فرایند تحلیل سلسله مراتبی (AHP)، با استفاده از داده های پرسشنامه ای، به خوشه بندی رفتار مصرف انرژی ساختمان های مسکونی پرداخته است. بر این اساس، ضرایب وزنی و معماری حاصل از AHP به عنوان اوزان و معماری اولیه شبکه عصبی استفاده شده است. شبکه عصبی در دو حالت «با اوزان و معماری اولیه» و «بدون اوزان و معماری اولیه» بر روی داده های یکسان اجرا گردید. بخش مسکونی شهر شیراز به عنوان جامعه آماری مورد نظر انتخاب گردید و به منظور آموزش و آزمایش شبکه عصبی، داده های 270 ساختمان مسکونی مورد استفاده قرار گرفت. مقایسه قدرت تفکیک و خوشه بندی مدل های FNN در دو حالت بیان گر این مطلب است که مدل شبکه عصبی با معماری و اوزان اولیه AHP نسبت به دیگر مدل، از سرعت و دقت بالاتری در پیش بینی و خوشه بندی برخوردار است.
هدف پژوهش حاضر، با توجه به ضرورت مدیریت انرژی، مدل سازی، پیش بینی و خوشه بندی مصرف انرژی ساختمان های مسکونی، جهت ممیزی و تعیین برچسب انرژی این ساختمان ها می باشد. از این رو این پژوهش، با تلفیق شبکه عصبی فازی (FNN) و فرایند تحلیل سلسله مراتبی (AHP)، با استفاده از داده های پرسشنامه ای، به خوشه بندی رفتار مصرف انرژی ساختمان های مسکونی پرداخته است. بر این اساس، ضرایب وزنی و معماری حاصل از AHP به عنوان اوزان و معماری اولیه شبکه عصبی استفاده شده است. شبکه عصبی در دو حالت «با اوزان و معماری اولیه» و «بدون اوزان و معماری اولیه» بر روی داده های یکسان اجرا گردید. بخش مسکونی شهر شیراز به عنوان جامعه آماری مورد نظر انتخاب گردید و به منظور آموزش و آزمایش شبکه عصبی، داده های 270 ساختمان مسکونی مورد استفاده قرار گرفت. مقایسه قدرت تفکیک و خوشه بندی مدل های FNN در دو حالت بیان گر این مطلب است که مدل شبکه عصبی با معماری و اوزان اولیه AHP نسبت به دیگر مدل، از سرعت و دقت بالاتری در پیش بینی و خوشه بندی برخوردار است.
کلیدواژگان:
زبان:
فارسی
انتشار در:
صفحات:
129 تا 152
لینک کوتاه:
https://www.magiran.com/p1201435