تشخیص بیماری دیابت با استفاده از شبکه عصبی مصنوعی و عصبی- فازی
نویسنده:
نوع مقاله:
مقاله پژوهشی/اصیل (دارای رتبه معتبر)
چکیده:
زمینه و هدف
یکی از مشکلات اساسی بیماری دیابت عدم تشخیص به موقع و درمان صحیح آن است. مطالعه حاضر با هدف تشخیص بیماری دیابت با استفاده از روش مبتنی برداده کاوی انجام شده است.
روش ها
این مطالعه از نوع تحلیلی بوده و پایگاه داده آن مشتمل بر 768 نفر با 8 ویژگی می باشد. در این پژوهش از شبکه های عصبی مصنوعی و عصبی-فازی جهت تشخیص بیماری دیابت و انجام محساسبات استفاده شد. تحلیل آماری با استفاده از نرم افزار SPSS 23 و برنامه نویسی در محیط نرم افزار MATLAB 2018انجام شده است. به منظور حصول دقت واقعی از روش Kfold جهت تفکیک نمونه ها به دو دسته آموزش (Train) و آزمون (Test) استفاده گردید.
نتایج
خطای محاسبه شده بر اساس میانگین مربعات خطا (mean square error) در روش شبکه عصبی مصنوعی پرسپترون چندلایه (MLP) و شبکه عصبی بردار یاد گیر کوانتیزه (Learning Vector Quantization) و شبکه های عصبی-فازی (Nero fuzzy) به ترتیب 98/6% و 98/2% و 99/6% بدست آمد.
نتیجه گیری
با توجه به نتایج مطالعه، بنظر می رسد استفاده از مدل های مبتنی برداده کاوی می تواند بعنوان یک روش کمکی در تشخیص بیماری دیابت کارآمد باشد. اگرچه روش های مورد مطالعه با دقت قابل قبول توانایی امکان پیش بینی بیماری دیابت را دارند اما نتایج مطالعه نشان می دهد که روش مبتنی بر عصبی فازی دقت بالاتری دارند.کلیدواژگان:
زبان:
فارسی
صفحات:
10 تا 20
لینک کوتاه:
https://www.magiran.com/p1933168