Investigation the soil structural stability, physical quality (S index) and organic carbon as affected by wetting and drying cycles in the presence of safflower residues

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction Conservation and improvement the soil structural stability play a key role in soil management in agro ecosystems especially in arid and semiarid region with high erosion potential. Soil structure is an important soil physical property and has many effects on other soil physical, chemical and biological behaviors such as retention and movement of water, nutrients and pollutions, soil hydraulic and mechanical properties, soil aeration and erosivity. Wetting and drying cycles are one of important environmental factor affecting soil structural stability. Previous studies showed inconsistent results about the positive or negative effects of wetting and drying cycles on soil stability. This study was conducted to investigate the effect of wetting and drying cycles on the soil structural stability in the presence of safflower residues. Materials and Methods The agricultural soil was collected from the soil surface layer (0–20 cm) of Shahrood in Semnan province and passed through a 4 mm sieve. An experiment was conducted including two treatments i.e. number of wetting and drying cycles (0, 1, 2, 4, 8 and 10 cycle) and amount of safflower residues (0, 1 and 2 g 100 g-1 soil ). Plant residues were collected from safflower fields and after drying, milled and passed through a 1 mm sieve. Then crop residues were mixed into soil. The wet and dry cycles were applied during 2 month. In wetting periods the soil was kept in filed capacity and in dry periods the soil was kept in electrical oven in 40°C. The soil organic carbon and soil diluted acid carbohydrate concentration were measured at the end of the experiment. The soil structural stability was measured using high energy moisture curve. The soil drainable pores, soil suction at inflection point, stability index, stability ratio and Dexter's S index were calculated. Results and Discussion The greatest soil organic carbon was observed in control treatment (0 wet and dry cycle) and then it was decreased by increment of cycles in all crop residues levels. These cycles improve the microbial activity during the rewetting process and increase decomposition of crop residues. The soil organic carbon and diluted acid carbohydrate were highest in treatments including 2 g residues 100g-1 in all studied wet and dry cycles. The greatest soil drainable pore volume and the lowest soil suction at inflection point were found in treatment including 4 wet and dry cycles. The results showed that 2 and 4 cycles increased the soil drainable pore volume by 58 and 106 % compared to the control treatment (no applied cycle). More increment of wet and dry cycles decreased the soil drainable pore volume and this factor was declined by 40 % in 10 cycles treatment compared to 4 cycles. It means that wet and dry cycles can improved the soil structure because of rearrangement of soil particles and improvement of soil particle contact points. However, the high number of wet and dry cycles destructed the aggregate and decreased their stability. In addition, the physical protection of soil aggregates from soil organic matters declined through aggregate breakdown. This phenomenon provided fresh organic matter for decomposers and consequently the aggregate stability decreased. Appling only one wet and dry cycle could not significantly improve the stability ratio. This ratio improved considerably when 2 and 4 cycles were used. Following the aggregate breakdown in treatments including more than 4 cycles, the stability ratio decreased in all crop residue levels. Our results showed that the greatest and the lowest volume of coarse and medium pore were observed in 4 and 10 wet and dry cycles treatments but the greatest and the lowest volume of fine pores were observed in 10 and 4 wet and dry cycles treatments. It means that the structural stability improvement during 0-4 cycle changed the pore distribution and made larger pores but the aggregate breakdown with more than 4 cycles changed the pore volume again and increased the portion of finer pores. Conclusion Our results showed that the low number of these cycles can improve the soil aggregation and aggregate stability but the high number of these cycles has negative effect on aggregate stability. However, the presence of organic matter in soil can decreased the negative effect of wet and dry cycles. These results confirmed the importance of incorporating crop residues in to the soils after crop harvest.
Language:
Persian
Published:
Journal of Agricultural Engineering, Volume:42 Issue: 2, 2019
Pages:
99 to 114
https://magiran.com/p2030329  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!