مرزبندی زون های دگرسانی پتاسیک و فیلیک بر اساس نتایج حاصل از مدل سازی سه بعدی داده های سیالات درگیر به روش شبکه های عصبی مصنوعی
امروزه یکی از روش های متداول در اکتشاف کانسارها، مطالعات زمین شناسی اقتصادی است. مدل سازی داده های میانبارهای سیال یکی از روش های متداول در مطالعات زمین شناسی اقتصادی به شمار می رود. در این مطالعه از روش شبکه های عصبی مصنوعی به عنوان یکی از روش های الگوریتم یادگیری ماشین به منظور مدل سازی سه بعدی داده های میانبارهای سیال در کانسار مس پورفیری سونگون و کاربردی کردن نتایج حاصل از آنالیز میانبارهای سیال استفاده شده است. به این منظور داده های حاصل از مطالعات میانبارهای سیال مستقیما جهت تفکیک زون های دگرسانی مرتبط با کانی زایی (پتاسیک، فیلیک و پتاسیک- فیلیک) در منطقه مورد مطالعه استفاده شده است. با توجه به ارتباطی که بین زون های دگرسانی و نیز مناطق مستعد کانی سازی در کانسارهای پورفیری وجود دارد، بر اساس 173 داده میانبارهای سیال موجود، تفکیک زون های دگرسانی در محدوده کانسار مس پورفیری سونگون بر اساس مدل سه بعدی حاصل از مطالعات میانبارهای سیال با استفاده از روش شبکههای عصبی مصنوعی صورت گرفت. بر اساس دقت نتایج حاصل از آزمایش مدل، می توان نتیجه گرفت که دقت مدل شبکه عصبی به کار گرفته شده در تفکیک زون های دگرسانی پتاسیک، فیلیک و پتاسیک- فیلیک در حدود 83 درصد بوده و مدل به کار گرفته شده به نحو مناسبی توانایی تفکیک زون های دگرسانی مرتبط با کانی سازی را در محدوده کانسار مس پورفیری سونگون داشته است. امروزه یکی از روش های متداول در اکتشاف کانسارها، مطالعات زمین شناسی اقتصادی است. مدل سازی داده های میانبارهای سیال یکی از روش های متداول در مطالعات زمین شناسی اقتصادی به شمار می رود. در این مطالعه از روش شبکه های عصبی مصنوعی به عنوان یکی از روش های الگوریتم یادگیری ماشین به منظور مدل سازی سه بعدی داده های میانبارهای سیال در کانسار مس پورفیری سونگون و کاربردی کردن نتایج حاصل از آنالیز میانبارهای سیال استفاده شده است. به این منظور داده های حاصل از مطالعات میانبارهای سیال مستقیما جهت تفکیک زون های دگرسانی مرتبط با کانی زایی (پتاسیک، فیلیک و پتاسیک- فیلیک) در منطقه مورد مطالعه استفاده شده است. با توجه به ارتباطی که بین زون های دگرسانی و نیز مناطق مستعد کانی سازی در کانسارهای پورفیری وجود دارد، بر اساس 173 داده میانبارهای سیال موجود، تفکیک زون های دگرسانی در محدوده کانسار مس پورفیری سونگون بر اساس مدل سه بعدی حاصل از مطالعات میانبارهای سیال با استفاده از روش شبکههای عصبی مصنوعی صورت گرفت. بر اساس دقت نتایج حاصل از آزمایش مدل، می توان نتیجه گرفت که دقت مدل شبکه عصبی به کار گرفته شده در تفکیک زون های دگرسانی پتاسیک، فیلیک و پتاسیک- فیلیک در حدود 83 درصد بوده و مدل به کار گرفته شده به نحو مناسبی توانایی تفکیک زون های دگرسانی مرتبط با کانی سازی را در محدوده کانسار مس پورفیری سونگون داشته است.
-
Developing GEP tree-based, Neuro-Swarm, and whale Optimization Models for evaluating Groundwater Seepage into Tunnels: A Case Study
Shirin Jahanmiri, Ali Aalianvari *, Malihehe Abbaszadeh
Journal of Mining and Environement, Autumn 2024 -
شناسایی و تفکیک هاله های ژئوشیمیایی با روش های خوشه بندی سلسله مراتبی، تکینگی و ماشین بردار پشتیبان
شهاب زنگنه، *، رضا قوامی ریابی، مجید انصاری جعفری، هوشنگ اسدی هارونی
نشریه مهندسی منابع معدنی، زمستان 1402