SCA based Fractional-order PID Controller Considering Delayed EV Aggregators
The EVs battery has the ability to enhance the balance between the load demand and power generation units. The EV aggregators to manage the random behaviour of EV owners and increasing EVs participation in the ancillary services market are employed. The presence of aggregators could lead to time-varying delay in load frequency control (LFC) schemes. The effects of these delays must be considered in the LFC controller design. Due to the dependency of controller effectiveness on its parameters, these parameters should be designed in such a way that the LFC system has desired performance in the presence of time-varying delay. Therefore, a Sine Cosine Algorithm (SCA) is utilized to adjust the fractional-order PID (FOPID) controller coefficients. Also, some evaluations are performed about the proposed LFC performance by integral absolute error (IAE) indicator. Simulations are carried out in both single and two area LFC system containing EV aggregators with time-varying delay. According to results, the proposed controller has fewer frequency variations in contrast to other controllers presented in the case studies. The obtained output could be considered as a solution to evaluate the proposed controller performance for damping the frequency oscillations in the delayed LFC system.