Common Fixed Point Results on Complex-Valued $S$-Metric Spaces

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Banach's contraction principle has been improved and extensively studied on several generalized metric spaces. Recently, complex-valued $S$-metric spaces have been introduced and studied for this purpose. In this paper, we investigate some generalized fixed point results on a complete complex valued $S$-metric space. To do this, we prove some common fixed point (resp. fixed point) theorems using different techniques by means of new generalized contractive conditions and the notion of the closed ball. Our results generalize and improve some known fixed point results. We provide some illustrative examples to show the validity of our definitions and fixedpoint theorems.
Language:
English
Published:
Sahand Communications in Mathematical Analysis, Volume:17 Issue: 2, Spring 2020
Pages:
83 to 105
https://magiran.com/p2147534