Synthesis of three-nucleus zinc/ iron/ copper nanocomposite on the clinoptilolite bed using galvanic replacement reactions and its antibacterial effect in aquatic environments
Galvanic replacement reactions are a special method for the synthesis of multi-nucleus nanoparticles of various metals within the bed of clinoptilolite. In this method, first, zinc metal cation (Zn +2) after replacing on the clinoptilolite bed was reduced to zinc metal nanoparticles using sodium borohydride salt. Then, the iron (Fe +2) and copper (Cu +2) salts with zinc metal nanoparticles were located on the clinoptilolite bed participate in the oxidation and reduction reactions by citing the potential of various cations in the electrochemical series. The result of these reactions is the formation of deposits of iron and copper nanoparticles on zinc nanoparticles. The selection of appropriate concentrations of cations and determination of the cause of stopping the growth of nanoparticles in each step was carried out by determining appropriate concentrations. XRD, FT-IR, TEM and SEM techniques were used to prove the various stages of work. The effect of the presence and absence of clinoptilolite on increasing the antimicrobial properties of zinc/ iron/ copper three-nucleus nanocomposites and also stability in aquatic environments using bacterial E-coli and Pasteurella specimens have been investigated.