طراحی مدل جامع هوش تجاری تخصیص تخت مراقبت های ویژه بر پایه اولویت بندی بیماران و اختصاص تجهیزات و خدمات
بیمارستان ها همچون یک واحد صنعتی متشکل از عوامل تولید مانند: سرمایه، نیروی انسانی، فن آوری، مدیریت و... هستند. عملکرد موثر یک بیمارستان به نحوه تخصیص منابع وابسته است که از جمله این منابع تخصیص تخت به بیماران می باشد.از این رو به منظور دسترسی به مراقبت به هنگام، ضروری است تا مدیریت موثری یرای تخصیص تخت صورت پذیرد. در همین راستا برای افزایش بهره وری و پیش بینی ظرفیت تخت ها و به منظور مدیریت بهتر تخت بیمارستان ها و ارتقاء سطح درمان هوش تجاری کمک کننده می باشد. لذا در این پژوهش درصدد طراحی مدل هوش تجاری تخصیص تخت بر پایه اولویت بندی بیماران و اختصاص تجهیزات و خدمات برآمدیم.
در این پژوهش ابتدا مدل اولیه تخصیص تخت بر پایه اولویت بندی در چارچوب مفاهیم هوش تجاری ارایه شد و طبق مدل مفهومی ارایه شده به جمع آوری داده های مورد نیاز از دیتابیس های مختلف بخش مراقبت های ویژه جراحی مغز و اعصاب بیمارستان لقمان حکیم با استفاده از ابزار ETL و ایجاد انباره داده پرداخته شد. در مرحله بعد به منظور دسته بندی بیماران و ساخت مدل پیش بینی از الگوریتم های طبقه بندی در داده کاوی استفاده گردید سپس اولویت بندی هر دسته از بیماران با روش پرومته انجام گرفت و جهت تعیین تاثیر اولویت بندی صورت گرفته از مدل شبیه سازی استفاده شد و در پایان مدل نهایی ارایه گردید.
مدل اولیه تخصیص تخت بر پایه اولویت بندی در چارچوب مفاهیم هوش تجاری با گردآوری داده های 420 بیمار و انجام داده کاوی جهت دسته بندی بیماران با انتخاب تکنیک درخت تصمیم با دقت 87.2% و اولویت بندی هر دسته از بیماران با استفاده از روش پرومته و شبیه سازی 14 تخت بخش مراقبت های ویژه بر اساس داده های گردآوری شده مورد آزمایش قرار گرفت و در نتیجه تعداد بیماران بستری شده به صورت ماهیانه در حالت عادی معادل 76 بیمار و پس از اعمال اولویت بندی معادل 86 بیمار برآورد گردید.
پس از آگاهی از نتایج مثبت مدل اولیه تخصیص تخت بر پایه اولویت بندی و افزایش 13 درصدی تعداد پذیرش در ماه و به تبع آن افزایش بهره وری و اثبات کارکرد مدل، اقدام به ارایه مدل جامع هوش تجاری تخصیص تخت بر پایه اولویت بندی شد. مدل ارایه شد در چارچوب هوش تجاری و با استفاده از تحلیل انلاین داده های بدست امده از بیمار طراحی شده و اطلاعات ارایه شده از این مدل می تواند پشتیبان موثری در تصمیم گیری پزشک برای انتخاب بیماران جهت پذیرش باشد.