Water productivity and stomatal gas exchanges of greenhouse tomato in two hydroponic systems
The amount of water and fertilizers used in the production of vegetables, specifically tomatoes, is high. This experiment was carried out to investigative of effects of yield, nutrient solution efficiency,Vegetative growth, and stomatal gas exchanges of two greenhouse tomato cultivars (V4-22, Amira) in open and closed hydroponic systems, as split-plot design based on completely randomized block design with three 3 replications at Shahid Chamran University of Ahvaz. The results showed that the effect of the hydroponic system had a significant effect on the efficiency rate of nutrient solution usage, fruit length, fruit firmness, leaf area, plant height, stomatal conductance and leaf temperature (P≤%5). The highest fruit length, fruit firmness, leaf area, plant height, stomatal conductance, and leaf temperature were measured in the open hydroponic system. The water productivity per performance in closed hydroponic system was greater than (approximately 55%) open hydroponic system. The highest and lowest water productivity biomass were obtained in the closed system and open system (48.91 and 34.42 kg/m3), respectively. The highest and lowest crop yields were measured in V4-22 and Amira cultivar (3874.29 and 3648.70 g per plant), respectively. Based on the results, the open hydroponic system has increased the characteristics such as plant height, leaf area, number of leaves and stomatal conductance, but the performance of the product in these two hydroponic systems is not different and also the closed hydroponic system reduces nutrient solution consumption up to 96% and fertilizer consumption up to 97%.