Exploiting of Green Synthesized Doped Metal Oxide Nanosensor for Electrochemical Determination of Aspirin and Ibuprofen in Biological and Pharmaceutical Samples
The aim of the present study was to develop electrochemical sensors based on pencil graphite electrode modified with green-caped ZnO, CdO nano particles and potassium tetra chloroplatinate (II), for a simple and fast simultaneous microextraction and determination of Aspirin (ASA) and Ibuprofen (IBU). The nanoparticles were initially synthesized by the use of four vegetable extracts including garlic, onion, green onion and cabbage. The fabricated nanoparticles and platinum were then deposited on the surface of a pencil graphite electrode and was used as a working electrode in a three electrodes system. The Taguchi experimental design was employed for investigating the effects different parameters. For this purpose, a Taguchi L16 orthogonal array (OA) design was applied and the results were confirmed by the ANOVA test. The electrochemical behavior of ASA and IBU at the modified electrodes, were studied. The calibration curves were linear in the range of 5.17to 134.0 µg.mL-1 and 3.13 to 231.0 µg.mL-1 for ASA and IBU respectively. The limits of detection for ASA and IBU was calculated to be 0.50 and 0.42 µg.mL-1 respectively. The modified sensor showed good performance for simultaneous analysis of ASA and IBU in biological and pharmaceutical samples.