Investigation on cross-linked nanomicrobial cellulose properties as modern wound dressing
Nanomicrobial cellulose is an important biopolymer with a three-dimensional structure that is produced by some microorganisms and has been widely used in medicine. One of the unique properties of microbial cellulose is its very high water absorption, which can be used to produce modern wound dressings. But after drying, it’s three-dimensional structure collapses and the amount of water reabsorption decreases. Accordingly, the aim of this project was to preserve the three-dimensional structure of nanomicrobial cellulose by networking it and improving the water reabsorption properties of this biopolymer. In addition, the cell viability, proliferation, and cell growth of the modified structure and untreated microbial cellulose were also studied.
In this study, microbial cellulose was produced, purified, and neutralized using stationary culture. The samples were then treated with different concentrations of citric acid/sodium hypophosphite and crosslinked. Finally, the characteristics of treated and raw samples were studied by various tests including ATR-FTIR, MTT, SEM, water absorption and in vitro and in vitro tests.
According to the results, it was found that the cross-linking operation prevents the collapse of the structure and not only does not cause toxicity, but in addition to increasing water uptake, it also increases viability, adhesion, and cell proliferation in the modified cellulose.
Cross-linked nanomicrobial cellulose has high potential as a modern wound dressing.