Investigation of Characteristics of Dielectric-Graphene Hybrid Plasmonic Waveguide in Far Infrared Spectrum
In this paper, a high-performance graphene dielectric plasmonic waveguide in the far infrared spectrum is proposed, which is one of the components of integrated photonic and optoelectronic circuits with various applications, including communications, military, medical, etc. The proposed waveguide geometric structure is composed of a rectangular cube layer with a semi-cylindrical ridge underneath (with a high refractive index material), rectangular cube substrate with a semi-cylindrical depression (with a low refractive index material), a sheet of graphene and the substrate of material with low refractive index, that the layers and sublayers are stacked on top of each other, respectively. Here, the surface plasmon polaritons (SPPs) modes are stimulated at the interface of graphene and dielectric. The propagation properties of SPPs modes have been investigated using the finite element method (FEM). The simulation results show that via modifying the geometrical parameters of the structure and tuning the chemical potential of the proposed graphene waveguide, a small normalized mode area ~〖10〗^(-4) and the propagation length ~〖10〗^3 μm are achieved. Therefore, it is recommended that the proposed waveguide can be used as a component of photonic devices due to relatively long propagation length and the strong confinement of light.