Effect of strain path and natural aging on the microstructure and hardness of AA7075 aluminum alloy

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

In the current research, the effect of strain path by two processes of conventional asymmetric rolling and asymmetric cross rolling, as well as natural aging on the microstructure and hardness of AA7075 aluminum alloy was investigated. The microstructure was examined by light microscopy and the hardness by macro-Vickers hardness tester. The results showed that the rolled sample (initial sample) had elongated grains due to rolling and the average width of the grains in this sample was 13.4 μm. By applying conventional asymmetric rolling up to 60%, the grains became more elongated and the average grain width reached 2.6 μm. By performing asymmetric cross rolling up to 40%, the average grain width reached 3.7 μm. The distribution of particles did not change significantly with rolling deformation. Shear bands were also formed in the sample after 40% and 60% conventional asymmetric rolling, as well as after 40% asymmetric cross rolling. At zero aging time, the hardness of the 60% conventionally rolled sample was higher than the 40% cross rolled sample. With increasing the aging time, the hardness of all samples increased due to natural aging. As the thickness reduction percentage increased (increasing the strain), the hardness increase percentage due to natural aging decreased. The increase in hardness due to natural aging was more noticeable in the cross-rolling process than in the conventional rolling process. After 7 days of natural aging, the hardness of the material reached its saturation limit.

Language:
Persian
Published:
Modares Mechanical Engineering, Volume:22 Issue: 11, 2022
Pages:
669 to 675
https://magiran.com/p2503523  
مقالات دیگری از این نویسنده (گان)