Determination of chemical composition and evaluation the antimicrobial activity of Olea europaea leaf extract against pathogenic bacteria “in vitro”

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction

Oxidation and food pathogens are considered two important and influential factors affecting food quality and health. Recently, due to the increasing demand for natural products, the application of synthetic preservatives to control microbial growth and lipid oxidation have been decreased significantly. Therefore, natural antioxidant and antimicrobial compounds are receiving more attention in food preservation technologies. In the last 2 decades, the use of herbal medicines rich in bioactive molecules (including polyphenols, carotenoids and flavonoids) with medicinal and health effects such as delaying the onset of some diseases such as cardiovascular disorders, diabetes, and cancer have increased. Furthermore, secondary metabolites in plant extracts and essential oils are able to control and inhibit free radical-mediated reactions. The olive tree (Olea europaea) is an evergreen plant that grows in tropical and subtropical regions. Iran is one of the most important olive growers in the world due to its suitable conditions for olive cultivation. The leaves of the olive plant have a high potential for the production of various products such as tea and extracts. Olive leaf extract can be used as a raw material in the production of various products, due to exhibiting various biological activities such as antimicrobial and antiviral activity, lipid stabilizer, blood pressure regulator, antioxidant activity, and free radical scavenger. The leaves of the olive tree also contain various phenolic compounds, mainly Oleuropein and hydroxytyrosol, with antioxidant and antimicrobial activities. Therefore, in this study, the amount of phenolic and flavonoid compounds of olive leaf ethanolic extract and its antioxidant effect and antimicrobial properties on Escherichia coli, Enterobacter aerogenesis, Bacillus cereus and Listeria innocua were investigated. 

Materials and Methods

The olive leaf ethanolic extract was prepared through maceration method and its total phenolic content (Folin-Ciocalteu method), total flavonoids content (aluminum chloride colorimetric assay), antioxidant activity (ABTS and DPPH free radical scavenging methods), and antimicrobial effect on E. coli, E. aerogenesis, B. cereus and L. innocua (based on disk diffusion agar, well diffusion agar, minimum inhibitory concentration, and minimum bactericidal concentration) were determined according to standard methods. Data were analyzed by SPSS software through one-way ANOVA and Duncan test at p<0.05.  

Results and Discussion

The ethanolic extract of olive leaves contained 176.58 ± 0.72 mg GAE/g total phenol and 69.85 ± 0.26 mg QE/g total flavonoids. In addition, ethanolic extract of olive leaf was able to inhibit free radicals DPPH (70.62 ± 0.59%) and ABTS (76.15 ± 0.43%). The antimicrobial results showed that the antimicrobial effect of the extract depended on its concentration and type of bacteria. Antimicrobial effect was increased as a function of ethanolic extract, and Gram-positive bacteria (B. cereus and L. innocua) were more sensitive to ethanolic extract of olive leaf than Gram-negative bacteria (E. aerogenesis and E. coli). Generally, B. cereus and E. aerogenesis were the most sensitive and resistant microbial strains to ethanolic extract of olive leaf, respectively.The results of this study showed that the high antioxidant and antimicrobial activity of olive leaf ethanolic extract is mainly due to its phenolic and flavonoid compounds. Olive leaf ethanolic extract was able to neutralize DPPH and ABTS free radicals. Also, Gram-positive bacteria were more sensitive to ethanolic extract of olive leaf than Gram-negative bacteria. In general, the ethanolic extract of olive leaf can be used as a nutraceutical to control or prevent the growth of spoilage/infection-causing microorganisms and free radical reactions in food and the human body. However, more in-depth studies are needed to determine the mechanism of antimicrobial and antioxidant effects of olive ethanolic extract in vitro and in vivo.

Language:
Persian
Published:
Iranian Food Science and Technology Research Journal, Volume:18 Issue: 5, 2023
Pages:
603 to 614
https://magiran.com/p2538702  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!