Investigation of Hydrocyclone Function in the Process of Solid Particles Separation in Stone-Cutting Industry

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
At the present, treatment and recycling of stone cutting industry wastewater is performed by old settling basin method and filter press method which need so much water, therefor, in this method a new method is proposed and investigated based on hydraulic centrifugal force by using a hydrocyclone. The effect of operational parameters such as pressure, concentration and type of particle samples have been studied on a hydrocyclone efficiency with a diameter of 24 mm. The experiments were designed by using Design Expert 7 software based on response surface method (RSM). Analysis of experimental data was conducted based on composite central design method (CCD). Experiments were conducted in 22 series with different conditions. In this study, stone powder particles were collected from wastewater of stone cutting plants. Two stone powders samples were achieved from Granite and Travertine stones with densities of 2720 and 2550 kg/m3 with particle sizes of less than 200 μm. Particles sizes were measured by Particles Size Analysis method and particles shape were determined by using (SEM). The results demonstrated that the separation efficiency for both of samples is proportional with pressure so that the more the input pressure, the more the separation efficiency. On the other hand, increasing the concentration causes a decrease in separation efficiency. Based on the results, the more the input pressure, the more the flow rate, however concentration in the investigated range has no significant effect on flow rate. The best separation efficiency was achieved in the pressure 2.63 bar and concentration 1.6 weight percent for Travertine sample with a value of 90.31 percent and for Granite sample in the pressure 3 bar and concentration 3 weight percent with a value of 91.45 percent.
Language:
Persian
Published:
Iranian Journal of Chemistry & Chemical Engineering, Volume:41 Issue: 4, 2023
Pages:
445 to 456
https://magiran.com/p2632094  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!