Evaluation of spatio-temporal downscaling algorithms of MODIS data to Sentinel-2 data in different land cover classes
Normally, images with a high resolution (temporal or spatial) are available, while there is a limitation in accessing images which are simultaneously high spatial and temporal resolution. While, in some applications, access to images with high spatial and temporal resolution is necessary. Therefore, this study was conducted to downscaling MODIS images to Sentinel-2 spatial resolution by STARFM, ESTARFM and FSDAF spatio-temporal downscaling algorithms in different land cover classes including urban, garden, pasture, agricultural and water classes. The study area was selected with a variety of land covers around the city of Mahabad, Iran. First, the corresponding visible and near-infrared bands in Sentinel-2 and MODIS were selected and necessary pre-processes such as geometric correction were done on these images. Then, Sentinel-2 images were simulated using downscaling algorithms. The results indicated the accuracy of downscaling in the urban, garden and pasture classes compared to the agricultural and water classes. So that the ESTARFM, FSDAF and STARFM algorithms averagely showed the coefficient of determination of 88.25, 87.25 and 86.5 for the urban class, the coefficient of determination of 83.75, 83.25 and 80.5 for the garden class and the coefficient of determination of 90.75, 70.5 and 87.5 for the pasture class in all bands.