فهرست مطالب

فصلنامه سنجش از دور و GIS ایران
سال شانزدهم شماره 2 (پیاپی 62، تابستان 1403)

  • تاریخ انتشار: 1403/04/01
  • تعداد عناوین: 8
|
  • بهاره قره داغی*، امیر قاسم زاده صفحات 1-18
    سابقه و هدف

    ایران به دلیل تنوع محیطی بالا، رتبه بالایی در بحران های ناشی از سوانح طبیعی دارد. با رشد سریع شهرها و تغییرات اقلیمی، سیل به عنوان یکی از این سوانح طبیعی خسارات اجتماعی- اقتصادی، بهداشتی و آسیب های محیط زیستی شدیدی را در بسیاری از مناطق به وجود آورده است. لذا، پیش بینی فضایی سیل به قدری حیاتی است که عدم شناسایی مناطق مستعد سیل در یک حوضه آبریز ممکن است آثار مخرب آن را افزایش دهد. در سال های اخیر، با پیشرفت ابزارهای سنجش از دور، اطلاعات جغرافیایی، یادگیری ماشین و مدل های آماری، ایجاد نقشه های پیش بینی سیل با دقت بالا کاملا امکان پذیر شده است. به همین منظور، در این پژوهش، با استفاده از تصاویر ماهوارهSentinel و استفاده از رویکرد نوین مدل همادی با شش مدل یادگیری ماشین به پیش بینی مکان های مستعد سیل در حوضه آبریز کارون پرداخته شد.
     

    مواد و روش ها

    در این پژوهش از رادار دیافراگم مصنوعی (SAR) به دست آمده از تصاویر Sentinel-1 برای شناسایی مناطقی که تحت تاثیر سیل قرار گرفته اند، استفاده شد. ابتدا تاریخ های بارندگی شدید و وقوع سیل در منطقه مورد مطالعه از منابع اطلاعاتی مختلف شناسایی شدند. سپس تصاویر Sentinel-1 مربوط به قبل و بعد از رویداد سیل از طریق پایگاه داده Copernicus تهیه شد. پردازش این داده ها با استفاده از پلتفرم SNAP انجام شد. شناسایی مناطق تحت تاثیر سیل با بهره گیری از روش حد آستانه صورت گرفت. برای این منظور از شاخص تفاوت نرمال شده آب (NDWI) تولیدشده از تصاویر Sentinel-2 و همچنین طبقات پوشش زمین که بدنه های آبی دائمی را نشان می دهند، استفاده شد تا آستانه ای که مناطق سیل زده را شناسایی می کند، تعیین شود. سپس لایه پلیگونی سیل به لایه نقطه ای تبدیل و در مجموع 70 نقطه وقوع سیل ایجاد شد. با توجه به مرور مطالعات پیشین و ویژگی های محلی، هفت عامل اصلی که به طور چشمگیری بر وقوع سیلاب در منطقه تاثیر دارند، شناسایی شدند. این عوامل شامل شاخص نرمال شده تفاوت پوشش گیاهی (NDVI)، شاخص رطوبت توپوگرافی (TWI)، شیب، جهت جریان، تجمع جریان، فاصله از رودخانه و بارندگی ماهانه هستند. مدل رقومی ارتفاع (DEM) منطقه نیز از پایگاه داده SRTM تهیه شده و تفکیک فضایی همه عوامل با لایه DEM یکسان تنظیم شد. سپس، با استفاده از الگوریتم های مختلف یادگیری ماشین، مدلی ترکیبی توسعه داده شد که نتایج دقیق تری در پیش بینی مناطق مستعد سیل ارائه می دهد. مدل های منفرد شامل مدل خطی تعمیم یافته (GLM)، رگرسیون درختی پیشرفته (BRT)، مدل ماشین بردار پشتیبان (SVM)، مدل جنگل تصادفی (RF)، مدل رگرسیون سازشی چندمتغیره (MARS) و مدل بیشینه بی نظمی (MAXENT) هستند.

    نتایج و بحث: 

    نتایج این مطالعه نشان می دهد که شمال شرق شهرستان الیگودرز، بخش هایی از دورود و ازنا در استان لرستان، خادم میرزا، شهرکرد و کیار در استان چهارمحال بختیاری، دنا و بویراحمد در استان کهکیلویه و بویراحمد، شهرستان سمیرم در استان اصفهان، و مناطق جنوبی حاشیه رودخانه کارون در استان خوزستان بیشترین پتانسیل وقوع سیل را در این حوضه دارند. ارزیابی عملکرد مدل ها نشان می دهد که مدل های جنگل تصادفی (RF) و بیشینه بی نظمی (MaxEnt) بالاترین دقت را در بین مدل های منفرد داشته اند. این مدل ها با ترکیب اطلاعات محیطی و داده های وقوع سیل، قادر به ارائه نقشه های حساسیت به سیل با دقت بالا هستند. از این نقشه ها می توان به عنوان ابزار مدیریتی مهمی برای کاهش اثرات مخرب سیل و جلوگیری از توسعه مناطق آسیب پذیر استفاده کرد.

    نتیجه گیری

    به طور کلی، این پژوهش نشان می دهد که استفاده از رویکرد همادی با ترکیب مدل های یادگیری ماشین می تواند نتایج قابل اطمینان تری در پیش بینی مناطق مستعد سیل فراهم کند. نتایج این پژوهش برای مدیران و برنامه ریزان کارآمد است و می تواند از توسعه در مناطق آسیب پذیر جلوگیری کند و در نتیجه به کاهش زیان های اقتصادی و جانی در آینده کمک کند.

    کلیدواژگان: سیل، حوضه آبریز کارون، تصاویر ماهواره Sentinel، مدل یادگیری ماشین، مدل همادی
  • فائزه سادات هاشمی*، محمدجواد ولدان زوج، فهیمه یوسفی صفحات 19-42
    سابقه و هدف

    کشاورزی سنگ بنای اقتصاد جهانی است و به مثابه منبع اصلی غذا و مواد خام برای صنایع مختلف عمل می کند. بااین حال، تقاضای فزاینده غذا به دلیل رشد جمعیت، تهدید قابل توجهی برای امنیت غذایی است، به ویژه زمانی که دسترسی محدود به منابع آب شیرین را در نظر بگیریم. شایان ذکر است که کشاورزی به تنهایی حدود 70 درصد از منابع آب شیرین جهان را مصرف می کند، که بر نیاز حیاتی برای مدیریت و افزایش بهره وری آبیاری برای تضمین تولید پایدار مواد غذایی تاکید دارد. در نتیجه مدیریت و افزایش بازده آبیاری امری ضروری است. در قلب تعیین نیاز آب آبیاری، مفهوم تبخیر و تعرق واقعی محصول (ETa) نهفته است، که نشان دهنده اتلاف آب، ترکیبی از تبخیر خاک و تعرق گیاه است. برآورد دقیق ETa در بهینه سازی روش های آبیاری، به حداکثر رساندن عملکرد محصول و به حداقل رساندن مصرف آب بسیار مهم است. برای این منظور، مدل ها و ابزارهای مختلفی برای تخمین ETa با هدف ارائه روش های کاربرپسندتر و کارآمدتر برای کشاورزان و پژوهشگران ایجاد شده اند. با توجه به مطالعات انجام شده و کاربرد وسیع مدل های برآورد ET، لازم است تمرکز بر روش های دقیق و سریع تعیین این پارامتر افزایش یابد. لذا هدف این مطالعه مقایسه روش های برآورد سنجش از دوری ETa کاربرپسندانه تر، از جمله سامانه EEFLUX، ابزار METRICTOOL و روش انتخاب خودکار پیکسل سرد و گرم مدل های SEBAL و METRIC است.

    مواد و روش ها

    Earth Engine Evapotranspiration Flux یا به اختصار EEFLUX نسخه ای از مدل METRIC است که بر روی سیستم موتور Google Earth کار می کند. METRICTOOL، ابزاری جدید در ArcGIS براساس مدل METRIC است. این ابزار پیش پردازش و شناسایی خودکار کالیبراسیون بالقوه و معرفی داده های ورودی را تسهیل کرده، زمان محاسبات را تا 50 درصد کاهش می دهد و جایگزینی کاربرپسندتر از دیگر پلتفرم های موجود پیاده سازی مدل METRIC است. روش انتخاب خودکار پیکسل سرد و گرم شامل ایجاد یک نقشه باینری از پیکسل های واجد شرایط که با استفاده از یک طبقه بندی کننده ساده مبتنی بر قانون شناسایی می شوند، و استفاده از الگوریتم جست وجوی جامع برای شناسایی پیکسل های گرم و سرد، مطابق با معیارهای تعریف شده است. برای برآورد ET با استفاده از روش های نام برده، از 6 تصویر ماهواره ای Landsat 8 در طول دوره کاشت محصول گندم زمستانه مزارع دانشگاه تهران واقع در محمدشهر کرج استفاده شد. ارزیابی روش های مذکور با استفاده از تبخیر و تعرق مرجع یونجه (ETr) با استفاده از روش FAO-Penman-Monteith به عنوان داده مرجع انجام شد.

    نتایج و بحث:

     RMSE سامانه EEFLUX، ابزار METRICTOOL، SEBAL و METRIC خودکار به ترتیب 2.45، 0.33، 0.39 و 2.76 به دست آمد. با توجه به نتایج محصول تبخیر و تعرق سامانه EEFLUX به رغم اختلاف عددی با دیگر روش ها همبستگی معناداری با آن ها داشت. مثلا R2 بین ETa این سامانه و ابزار METRICTOOL 0.91 برآورد شد. نتیجه آن است که گرچه داده های این سامانه به دلیل استفاده از داده های هواشناسی جهانی CFSV2 در ایران برای مطالعات محلی از دقت کافی برخوردار نیستند، اما در مطالعات مناطق با وسعت بالا یا جهانی نتایج قابل قبولی به دست می دهند.  ابزار METRICTOOL و مدل METRIC خودکار بیشترین همبستگی (R2=0.99) و نزدیکی عددی را با یکدیگر داشتند و به ترتیب با RMSE 0.33 و 0.39 دقت بالاتری نسبت به مدل SEBAL خودکار دارند.

    نتیجه گیری

    با توجه به نتایج عددی رویکرد انتخاب خودکار پیکسل سرد و گرم می تواند دقت مشابهی در مقایسه با ابزار METRICTOOL داشته باشد. بدین ترتیب رویکرد خودکار کارایی مدل را از نظر زمان و بازده افزایش و می تواند خطای انسانی در تخمین تبخیر و تعرق را برای کاربران جدید یا بی تجربه کاهش دهد و این مدل ها را در دسترس عموم کاربران قرار دهد. همچنین داده های EEFLUX می توانند در مطالعات با وسعت بالا برای اقدامات مدیریتی کارایی لازم را داشته باشند.

    کلیدواژگان: امنیت غذایی، تبخیر و تعرق، سبال، متریک، سامانه EEFLUX
  • بهنام اصغری بیرامی*، مهدی مختارزاده صفحات 43-64
    سابقه و هدف

    در سال های اخیر استفاده از تصاویر ابرطیفی به دلیل غنای بالای طیفی در زمینه های مختلف مطالعات زمین به خصوص در سنجش از دور بسیار افزایش یافته است. طبقه بندی این تصاویر به منظور استخراج اطلاعات از آنها همواره با چالش هایی مختلفی همچون چگونگی مدیرت ابعاد این داده ها و صحت کم طبقه بندی در هنگام وجود تعداد محدودی از نمونه های آموزشی همراه است. افرایش صحت طبقه بندی این تصاویر با هدف مطالعات دقیق پدیده ها و تغییرات سطح زمین همواره از موضوعات مورد مطالعه جامعه علمی سنجش از دور بوده است. در سال های اخیر استفاده از ویژگی های مکانی به منظور افزایش صحت طبقه بندی تصاویر ابرطیفی بسیار رایج شده است. تاکنون روش های مختلفی برای طبقه بندی طیفی-مکانی تصاویر ابرطیفی معرفی شده است و پژوهش های مربوطه در راستای معرفی روش هایی با ساختار ساده تر و صحت بالاتر نیز در جریان است. به دلیل وجود رابطه های پیچیده میان باندهای مختلف تصویر ابرطیفی با الهام از پژوهش های موجود در شاخه بینایی ماشین در این پژوهش روشی توسعه داده شده است که می تواند روابط پیچیده میان ویژگی های طیفی و مکانی در یک تصویر ابرطیفی را مدل سازی کند. هدف اصلی این مقاله ارائه روشی جدید و کارا مبتنی بر ترکیب ویژگی های مستخرج از ماتریس محلی کرنل وزن دار ویژگی های طیفی و فرکتالی به منظور تولید ویژگی برای طبقه بندی تصاویر ابرطیفی است.

    مواد و روش ها

    به منظور طبقه بندی تصاویر ابرطیفی در پژوهش حاضر ابتدا یک مرحله کاهش بعد بر روی تصویر ابرطیفی انجام می شود. در مرحله بعد ویژگی های مکانی مبتنی بر بعد فرکتال جهت دار تولید می شوند و مجددا این ویژگی ها کاهش بعد پیدا می کنند. در مرحله بعد ویژگی های مستخرج از ماتریس محلی کرنل وزن دار از هر دو دسته ویژگی های طیفی و فرکتالی تولید می شوند. این ویژگی های ثانویه وابستگی های محلی غیرخطی میان ویژگی های طیفی و فرکتالی را که در روش های پیشین طبقه بندی مورد توجه نبوده است، در فرایند تولید ویژگی لحاظ می کنند که در نهایت سبب افزایش صحت طبقه بندی می شوند. سپس این دو دسته بردار ویژگی جدید برای هر پیکسل با هم الصاق می شود و یک بردار غنی از اطلاعات طیفی- مکانی را تشکیل می دهد. در نهایت به منظور تعیین برچسب هر پیکسل، بردار ویژگی حاصل از الگوریتم ماشین بردار پشتیبان طبقه بندی می شود. آزمایش های این پژوهش بر دو تصویر مرجع ابرطیفی واقعی ایندین پاین و دانشگاه پاویا انجام شده است.

    نتایج و بحث: 

    تحلیل نتایج نشان می دهد که روش پیشنهادی با در نظر گرفتن ویژگی های مستخرج از ماتریس محلی کرنل وزن دار ویژگی های طیفی- فرکتالی موجب افزایش 20 و 18 درصدی صحت طبقه بندی در مقایسه با طبقه بندی با ویژگی های طیفی تنها به ترتیب در تصاویر ایندین پاین و دانشگاه پاویا شده است. این نتیجه تایید می کند که در نظر گرفتن اطلاعات مکانی به طور موثر سبب افزایش چشمگیر صحت طبقه بندی حتی زمانی که نمونه های آموزشی اندکی در دسترس باشد، می شود. همچنین رویکرد پیشنهادی این پژوهش در مقایسه با چندین پژوهش دیگر در این حوزه به صحت های بالاتری رسیده است.

    نتیجه گیری

    عملکرد بهتر روش پیشنهادی در مقایسه با دیگر روش های رقیب به دلیل در نظر گرفتن وابستگی های محلی غیرخطی میان ویژگی های طیفی و فرکتالی است که تاکنون در پژوهش های پیشین مورد توجه نبوده است. در پژوهش های آتی در نظر داریم که رویکرد پیشنهادی را درگام اول از نظر زمانی و در گام بعدی با در نظر گرفتن تعداد بیشتری از ویزگی های مبتنی بر هندسه فرکتال از نظر صحت بهبود دهیم.

    کلیدواژگان: ماتریس محلی کرنل وزن دار، طبقه بندی، ابرطیفی، بعد فرکتال، بافت تصویر
  • هانیه ژنده خطیبی، افشین شریعت مهیمنی*، متین شهری صفحات 65-84
    سابقه و هدف

    در سال های اخیر استفاده از کلان داده های تلفن همراه در مطالعات حمل ونقلی بسیار مورد توجه متخصصان قرار گرفته است. منشا ایجاد سفرهای شهری، نیاز افراد به انجام دادن فعالیت است. ازطرفی، سطح فعالیت های شهری و الگوی آن نیز در زمان ها و مکان های مختلف متغیر است. داده های تلفن همراه، به عنوان نوعی از داده های پیوسته مکانی- زمانی، حضور افراد در مکان ها و زمان های مختلف را ثبت می کنند و بنابراین این داده ها با نرخ نفوذ بالا به منظور شناسایی سطح فعالیت شهری و استخراج الگوی فعالیت افراد در زمان های مختلف، مناسب و پرکاربرد هستند. در این پژوهش، با توجه به اهمیت ساختار فرهنگی، مذهبی، گردشگری و همچنین وجود مراکز درمانی کلان شهر شیراز، این شهر به عنوان منطقه مطالعاتی در نظر گرفته شده است. لذا تحلیل الگوی مکانی و زمانی سفرهای شهری با به کارگیری داده های پیوسته مکانی- زمانی همچون داده های تلفن همراه، می تواند به بهبود مدیریت سیستم حمل ونقل و برنامه ریزی و سیاست گذاری صحیح این شهر کمک شایان توجهی کند.

    مواد و روش ها

    متغیر مورد بررسی در این مطالعه، تراکم سطح فعالیت در یک برش زمانی و یک واحد مکانی مشخص است. فعالیت به معنای تعداد افرادی است که به منظور انجام فعالیتی با هدف معین ناحیه ای را ترک و یا به ناحیه ای وارد می شوند. تراکم سطح فعالیت نیز بیانگر میزان فعالیت در واحد مساحت هر ناحیه ترافیکی است. به منظور بررسی تراکم سطح فعالیت افراد در سطح 321 ناحیه ترافیکی شهر شیراز، داده های تلفن همراه به مدت یک هفته (03/04/1400 تا 09/04/1400) در شهر شیراز جمع آوری شد. پس از پاکسازی و آماده سازی داده ها، نقاط توقف افراد و محل خانه آن ها شناسایی شد. ضمن به کارگیری ضریب تعمیم مناسب، سطح فعالیت در نواحی ترافیکی در بازه های زمانی یک ساعته در روزهای کاری، نیمه کاری و غیرکاری برآورد شد. در ادامه میزان خودهمبستگی مکانی سطح فعالیت، با استفاده از شاخص خودهمبستگی مکانی Moran’s I عمومی و محلی در روزهای کاری، نیمه کاری و غیرکاری بررسی شد. سپس، با استفاده از تحلیل های اکتشافی سری زمانی فعالیت های شهری و تحلیل یکنواختی سری زمانی (SNHT)، الگوی زمانی سطح فعالیت ها، بازه زمانی آغاز فعالیت ها، بازه اوج میان روز، بازه اوج عصر و سایر مشخصه های سری زمانی بررسی شد.

    نتایج

    در تحلیل مکانی میزان خودهمبستگی مکانی سطح فعالیت، با استفاده از شاخص خودهمبستگی مکانی Moran’s I عمومی و محلی در روزهای کاری، نیمه کاری و غیرکاری بررسی و وجود خودهمبستگی مکانی مثبت و معنادار فعالیت در واحد مساحت نواحی ترافیکی (P-Value < 0.001) تایید شد. لذا سطح فعالیت نواحی، متاثر از روابط مکانی در محدوده مطالعاتی است و نواحی مهم با تراکم فعالیت بالا در مناطق مرکزی شهری شناسایی شدند. نتایج تحلیل های سری زمانی اکتشافی نمایانگر تغییرات ساعتی در الگوی زمانی سطح فعالیت هاست. همچنین در روزهای کاری فعالیت های بیشتری نسبت به روزهای غیرکاری و نیمه کاری انجام می شود. سری زمانی در نیمی از روز نیمه کاری کاملا مشابه با روزهای کاری است و پس از ساعات اداری با کاهش سطح فعالیت روندی بین روزهای کاری و روز غیر کاری تجربه می کند. با بررسی سری زمانی فعالیت ها بازه اوج میان روز در ساعت 12 تا ساعت 14 و بازه اوج عصر در ساعت 20 تا ساعت 22 رخ می دهد. همچنین کمترین سطح فعالیت روزانه بین ساعت 3 تا 6 صبح تشخیص داده شد. با استفاده از آزمون یکنواختی سری زمانی نیز بازه زمانی آغاز فعالیت ها در روزهای کاری و نیمه‎کاری در ساعت 8 صبح و در روزهای غیرکاری ساعت 9 صبح شناسایی شد. شایان ذکر است به منظور اعتبارسنجی جمعیت ساکن شناسایی شده و ضرایب تعمیم، همبستگی مکانی بین جمعیت برآوردشده از داده های تلفن همراه و جمعیت واقعی هریک از نواحی ترافیکی بررسی شد که برابر با 82/0 است و از نظر آماری معنادار و قابل قبول است.

    نتیجه گیری

    نتایج این مطالعه می تواند در فرایند برنامه ریزی و سیاست گذاری صحیح، مدیریت تقاضا و حضور افراد در مکان های پرتراکم شهر و در بازه زمانی دلخواه و همچنین تحلیل های مرتبط با اثرات زیست محیطی حمل و نقل شهری تاثیرگذار باشد. با در دسترس بودن داده های تلفن همراه با دقت مناسب در سایر مراکز فعالیتی با مقیاس های مختلف (یک محدوده ترافیکی، محدوده شهر، استان و حتی کل کشور)، می توان الگوهای مختلف فعالیت شهری و از جمله نتایج این مطالعه را استخراج کرد.

    کلیدواژگان: الگوی فعالیت شهری، تحلیل مکانی، تحلیل زمانی، داده های تلفن همراه
  • امیر هادیان، مینا مرادی زاده* صفحات 85-104
    سابقه و هدف

    آلودگی هوا یکی از مهم ترین بحران هایی است که امروزه اکثر کشور ها با توجه به پیشرفت صنعت و فناوری با آن رو به رو هستند. کشور ایران و به ویژه شهر تهران نیز از این پدیده مستثنا نیست. تاثیر آلودگی هوای شهری بر محیط زیست و سلامت انسان نگرانی های فزاینده ای را برای محققان، سیاست گذاران و شهروندان برانگیخته است. برای کاهش تاثیرات منفی آلودگی هوا بر سلامت، اندازه گیری به موقع آن در وضوح زمانی و مکانی بالا اهمیت فراوانی دارد. ازطرفی، ایستگاه های سنجش آلودگی هوا در سطح شهر به رغم صحت بالا در اندازه گیری آلاینده ها، به دلیل محدودیت های زمانی و مکانی و اندازه گیری نقطه ای قابلیت تعمیم پذیری ندارند. راهکار مکمل و بعضا جایگزین استفاده از سنجش ازدور و داده های ماهواره ای است که با توجه به هزینه بهینه و پوشش وسیع روشی مناسب برای پایش آلودگی هوا به شمار می رود. آلاینده های دی اکسید نیتروژن (NO2) و ازن (O3) از مهم ترین شاخص های آلودگی هوا هستند که در این پژوهش برای مدل سازی توزیع غلظت آن ها در سطح شهر تهران با توان تفکیک مکانی برابر (تقریبا یک کیلومتر) و صحتی بالاتر از داده های ماهواره ای تلاش خواهد شد.

    مواد و روش ها

    به منظور مدل سازی توزیع غلظت دو آلاینده NO2 و O3 با دقت و توان تفکیک مناسب، از روش نوآورانه مبتنی بر روش درون یابی کریجینگ استفاده شده است. این روش با بهره گیری هم زمان از مزایای داده های ایستگاهی سنجش آلودگی از شرکت کنترل کیفیت هوای تهران، که با بهره گیری از 21 ایستگاه سنجش آلودگی هوای فعال که در نقاط مختلف شهر تهران مستقر است، بالاترین دقت در اندازه گیری پارامترها را دارند و داده های ماهواره ی سنتینل 5P، که از توان تفکیک مکانی بالا برخوردارند، مدل سازی را انجام می دهد. با توجه به قابلیت های سامانه گوگل ارت انجین، نقشه های توزیع غلظت دو آلاینده در کل مناطق 22 گانه شهر تهران به صورت ماهانه و همچنین داده های ماهواره ای نقطه ای دو آلاینده در مختصات مکانی ایستگاه های زمینی، به صورت ساعتی، روزانه و ماهانه به مدت یک سال از تاریخ 1 فروردین 1400 تا 1 فروردین 1401 در سامانه گوگل ارت تهیه و جمع آوری شد. پس از بررسی همبستگی بین داده های ماهواره ای و داده های ایستگاه های سنجش زمینی و حذف بایاس از داده های ماهواره ای، مراحل مختلف مدل سازی نوآورانه درون یابی کریجینگ به منظور مدل سازی توزیع غلظت دو پارامتر به کار گرفته شد.

    نتایج و بحث:

     به منظور صحت سنجی داده های خروجی حاصل از مدل سازی توزیع آلاینده ها، 70 درصد ایستگاه ها به عنوان داده های آموزش (Train) و 30 درصد ایستگاه ها به عنوان داده های آزمون (Test) انتخاب شدند. این نقاط به صورت تصادفی و برای هر ماه از سال 1400 انتخاب شدند. مدل سازی نقشه نهایی توزیع آلاینده ها با استفاده از داده های آموزش و صحت سنجی مدل سازی انجام شده با استفاده از داده های آزمون انجام شد. این کار با استفاده از محاسبه میانگین خطای بین داده های پیش بینی شده توسط مدل و داده های ایستگاهی مستخرج از شرکت کنترل کیفیت هوای تهران (با واحد ppb) و همچنین محاسبه شاخص RMSE صورت گرفته است. نتایج نشان می دهد که میانگین خطای ماهانه مدل پیشنهادی، نسبت به داده های ماهواره سنتینل 5P از 16.8 به 1.73 درصد برای آلاینده NO2 و از 21.9 به 2.53 درصد برای آلاینده O3  کاهش یافته است. همچنین خطای جذر میانگین مربعات (RMSE) این مدل نسبت به داده های ایستگاهی سنجش آلودگی برای آلاینده NO2 و O3 به ترتیب برابر با ppb 2.79 و ppb 0.86 است. این در حالی است که در حالت مشابه شاخص RMSE نقشه خروجی ماهواره سنتینل 5P نسبت به داده های ایستگاهی سنجش آلودگی برای آلاینده NO2 و O3 به ترتیب برابر با ppb 10.083 و ppb 6.238 است.

    نتیجه گیری

    با توجه به اینکه مدل تلفیقی پیشنهادی عملکرد بسیار مطلوبی در مدل سازی غلظت توزیع غلظت آلاینده های مورد نظر در طول سال 1400 با دقت و توان تفکیک مکانی تقریبا یک کیلومتری داشته است، به کارگیری هم زمان داده های ماهواره ای و زمینی در برآورد آلاینده ها توصیه می شود.

    کلیدواژگان: آلودگی هوا، آلاینده های ترافیکی، درون یابی کریجینک، ماهواره Sentinel-5P، آلاینده NO2، آلاینده O3
  • آیدا غفوری، میرسعید موسوی*، مهسا فرامرزی اصل صفحات 105-136
    سابقه و هدف

    مشکلات موجود در زندگی شهری مانند کم رنگ شدن نقش محیط به عنوان محلی برای حضور شهروندان و فعالیت بدنی آنها، افزایش وسایل نقلیه و در نتیجه کم تحرکی و افزایش بیماری های غیرواگیر، نگرانی جامعه جهانی را درباره سلامت عمومی در پی داشته است. هدف پژوهش، ارزیابی ذهنی و عینی معیارهای تاثیرگذار محیطی بر سلامت عمومی ساکنان در سه بعد جسمی، روانی و اجتماعی، در محله آغه زمان شهر سنندج است.

    مواد و روش ها

    جمع آوری داده های ذهنی و عینی پژوهش از لحاظ زمانی به صورت متوالی صورت گرفته، در این راستا چهار فاز پژوهش تعریف شده است. فاز اول ارزیابی ذهنی کیفی ساکنان از سلامت روانی و اجتماعی، فاز دوم گردآوری داده های ذهنی کمی ساکنان از سلامت جسمی، فاز سوم ارزیابی عینی کمی محیط و فاز چهارم بررسی همبستگی بین متغیرهای پژوهش است. داده های ذهنی با استفاده از پرسش نامه و داده های عینی با استفاده از سیستم اطلاعات جغرافیایی به دست آمده است. برای تحلیل رابطه بین معیارهای محیطی محله و فعالیت های بدنی و تعیین رابطه بین متغیرها از تحلیل رگرسیون در نرم افزار SPSS استفاده شده است. داده های عینی از قبیل نوع بلوک بندی و نمونه الگوی فضایی شکلی محله، لایه کاربری اراضی و شبکه معابر و... از طریق سیستم اطلاعات جغرافیایی محاسبه شد و در شاخص نحو فضا وارد شد تا میزان پیاده مداری محله مشخص شود. در نهایت روابط و تاثیر معیارهای محیطی بر سلامت عمومی با استفاده از تحلیل رگرسیون در نرم افزار  Lisrel مشخص شده است.ن

    تایج و بحث: 

    نتایج نشان داده که دو معیار آسایش و آرامش محیط با امتیاز 23 و تعاملات اجتماعی و فرهنگ همسایگی با امتیاز 21 به ترتیب بیشترین تاثیر را بر سلامت روانی و اجتماعی دارند. همچنین معیارهای محیطی مانند اختلاط کاربری با آماره 671/5، کیفیت های بصری و زیبایی شناختی با آماره 961/7 و زیرساخت های ویژه پیاده و دوچرخه با آماره 475/8 به ترتیب بیشترین تاثیر را بر فعالیت های بدنی کاری، تفریحی و ورزشی و به تبع آن سلامت جسمی دارند. با توجه به داده های به دست آمده خیابان نمکی با امتیاز 21 بیشترین میزان اتصال و هم پیوندی، عمق و کنترل را با کل محله دارد و بالاترین سطح پیاده مداری را در سطح محله به خود اختصاص داده است.

    نتیجه گیری

    نتایج کلی نشان می دهد که با توجه به تاثیر و ارتباط مستقیم معیارهای محیطی طراحی شهری بر فعالیت های بدنی و از طرف دیگر وجود ارتباط مثبت و معنادار بین فعالیت های بدنی و سلامت عمومی، مشخص شد که سلامت عمومی ساکنان با معیارهای محیطی طراحی شهری ارتباط دارد، لیکن این ارتباط نه به طور مستقیم، بلکه با مداخله فعالیت های بدنی اتفاق می افتد.

    کلیدواژگان: سلامت عمومی، طراحی شهری، سیستم اطلاعات جغرافیایی، نحو فضا، شهر سنندج
  • صادق بولاقی، حانیه افصحی، مسعود مینائی* صفحات 137-158
    سابقه و هدف

    در سالیان اخیر افزایش جمعیت جهان و گسترش شهرنشینی، به ایجاد تغییرات گسترده ای در کاربری و پوشش اراضی منجر شده است. این فرایند پیامدهای زیان بار متعددی مانند افزایش دمای سطح زمین، جنگل زدایی و بیابان زایی، کاهش کیفیت خدمات اکوسیستم، کاهش تنوع زیستی و تهدید امنیت غذایی خواهد داشت. ازاین رو پایش و مدل سازی این تغییرات ضروری است و می توان با مدیریت بهینه اراضی گام مهمی در بهره وری صحیح از منابع طبیعی و توزیع امکانات برداشت. نظر به این مهم که حوضه آبریز رودخانه ارس در طول زمان دچار تحولات بسیاری به خصوص در اراضی انسان ساخت شده است، تمرکز پژوهش حاضر بر مدل سازی تغییرات کاربری/ پوشش اراضی در این حوزه است.

    مواد و روش ها

    در این راستا ابتدا نقشه های کاربری اراضی منطقه برای سال های 2000 و 2020 از پروژه Globeland30 مرکز ملی ژوماتیک چین استخراج شدند. در ادامه نیز با توجه به سناریوی رشد اراضی انسان ساخت و به کمک روش های BWM و MEREC که از جمله روش های نوین تحلیل های تصمیم گیری چندمعیاره مبتنی بر GIS به شمار می روند، دو نقشه برای نمایش پتانسیل رشد اراضی انسان ساخت منطقه تهیه شده است. در انتها این دو نقشه و نقشه های کاربری اراضی ورودی های مدل CA-Markov را تشکیل داده و فرایند مدل سازی یک بار با ترکیب BWM+ CA-Markov و بار دیگر با ترکیب CA-Markov MEREC+ برای سال 2040 انجام شده است.

    نتایج و بحث:

     بررسی نتایج نشان داد که در خروجی مدل ترکیبی BWM + CA-Markov وسعت اراضی انسان ساخت از 603 کیلومتر مربع در سال 2020 به بیش از 930 کیلومتر مربع در سال 2040 افزایش یافته است. درحالی که این رقم در خروجی مدل MEREC + CA-Markov حدود 829 کیلومتر مربع است. ازطرفی نتایج نهایی حاصل از اشتراک خروجی مدل های ترکیبی مذکور نیز نشان داد که وسعت این اراضی از 603 کیلومترمربع در سال 2020 به 930 کیلومترمربع در سال 2040 افزایش خواهد یافت.

    نتیجه گیری

    رشد فزاینده اراضی انسان ساخت در این حوضه می تواند به تخریب منابع زیست محیطی و تهدید اکوسیستم منجر شود. نتایج این پژوهش مدیران مربوطه را در راستای مدیریت بهینه شرایط پیش رو و فراهم آوردن زیرساخت های مقتضی یاری می رساند.

    کلیدواژگان: کاربری، پوشش اراضی، اراضی انسان ساخت، زنجیره مارکوف، سلول های خودکار، تحلیل های تصمیم گیری چندمعیاره (MCDM)، حوضه آبریز رودخانه ارس
  • ریحانه سعیدی، حسین آقا محمدی*، علی اصغر آل شیخ، علیرضا وفائی نژاد صفحات 159-178
    مقدمه

    سیستم های پاسخ اضطراری هوشمند از فناوری های مدرن مانند اینترنت اشیاء (IoT) استفاده می کنند تا بهبود عملکرد واحدهای واکنش اضطراری را فراهم کنند. این سیستم ها به منظور بهبود کیفیت خدمات، کاهش هزینه ها و افزایش نظارت بر فرایند واکنش اضطراری طراحی شده اند. از جمله اهداف اصلی این سیستم ها می توان به بهینه سازی مسیر واکنش اضطراری از طریق ارتباط با اشیا و جمع آوری داده های مکانی اشاره کرد. این سیستم ها با استفاده از مدل های مسیریابی مبتنی بر اینترنت اشیاء، قادر به بهینه سازی مسیر واکنش اضطراری هستند و باعث بهبود تجربه کاربران می شوند. به عبارت دیگر، این سیستم ها از اطلاعات جمع آوری شده توسط اینترنت اشیاء برای بهبود فرایند اضطراری استفاده می کنند. سیستم های پاسخ اضطراری هوشمند نقش مهمی در بهبود کارایی واحدهای واکنش اضطراری و ارتقای سطح خدمات در مواقع اضطراری دارند. این سیستم ها به صورت کامل در دسترس اند و باعث افزایش بهره وری و کارایی در مواقع اضطراری می شوند.

    مواد و روش ها

    یک زیرساخت داده های مکانی برای یکپارچه سازی سیستم و افزایش تلاش های واکنش اضطراری ایجاد شده است که امکانات بسیار مهمی برای بهبود خدمات پزشکی فوری فراهم می کند. این زیرساخت شامل یک پورتال است که مسیر بهینه از محل حادثه تا مرکز پزشکی را به دقت بر روی نقشه نمایش می دهد تا به تیم پزشکی کمک کند با سرعت و کارایی بیشتر به فرد مجروح برسند. علاوه براین، این پورتال امکان انتقال اطلاعات حسگر مانند علائم حیاتی فرد مصدوم را به تلفن همراه پزشک در آمبولانس از طریق بلوتوث فراهم می کند که این اطلاعات به طور هم زمان برای ارزیابی بیشتر به اشتراک گذاشته می شوند تا در صورت اضطرار، به سرعت و با دقت مناسب به فرد مجروح کمک کنند. این سامانه باعث افزایش کارایی و سرعت در واکنش به حوادث اضطراری می شود و امکان دسترسی سریع و بهینه به خدمات پزشکی را فراهم می کند. به طور خلاصه، این زیرساخت داده های مکانی بهبود چشمگیری در عملکرد واکنش به حوادث اضطراری درمانی داشته و امکان ارائه خدمات بهبودیافته و بهینه تر در حوادث اضطراری را فراهم کرده است.

    نتایج و بحث:

     مراکز پزشکی اهمیت موضوع بهداشت و درمان را اولویت خود می دانند. برای تعیین این اولویت ها و بهبود فرایند تخصیص منابع، از یک مدل وزن دهی سلسله مراتبی آنلاین استفاده می کنند. این مدل به بهینه سازی تخصیص منابع براساس اطلاعات بهداشتی بی درنگ مصدومان کمک می کند. در یک مورد آزمایشی که برای این مدل انجام شد، یک مصدوم با موفقیت در منطقه 5 تهران تحت درمان قرار گرفت. استفاده کارآمد از اینترنت اشیاء و زیرساخت داده های مکانی، این مرکز پزشکی را قادر به بهبود و بهینه سازی خدمات درمانی خود کرد. این نتایج نشان دهنده اهمیت اطلاعات مکانی در کنار داده های پزشکی و فناوری اینترنت اشیاء در بهبود خدمات پزشکی و افزایش کیفیت درمان است.

    نتیجه گیری

    سیستم های واکنش اضطراری سنتی بیشتر براساس مکانیسم های سنتی و فاقد فناوری مدرن مانند اینترنت اشیاء و یکپارچه سازی داده های مکانی عمل می کنند. به همین دلیل، این سیستم ها ممکن است با مشکلاتی همچون تاخیر در ارسال کارکنان اورژانس به محل حادثه و کمبود اطلاعات دقیق و سریع از بیمار مواجه شوند. اگر فناوری های مدرن مانند هوش مصنوعی، اینترنت اشیاء و سیستم های اطلاعات جغرافیایی به این سیستم ها اضافه شوند، می توانند مشکلاتی را که در سیستم های سنتی واکنش اضطراری وجود دارد، حل کنند. این فناوری ها امکان پاسخ سریع تر و کارآمدتر به بحران ها را فراهم می کنند و به سازمان های ذی ربط از جمله سازمان مدیریت بحران کمک می کند تا تصمیمات بهتری برای تخصیص منابع در شرایط اضطراری بگیرند و عملکرد کلی خود را بهبود بخشند. با استفاده از داده های جمع آوری شده توسط این فناوری ها، سازمان های اضطراری می توانند بهبودی محسوسی در پاسخ به شرایط اضطراری ایجاد کنند و هزینه های زمانی، مالی و انسانی را کاهش دهند. به طور کلی، این رویکرد جدید به سیستم های واکنش اضطراری امکان پذیری بهتری در مواجهه با بحران های مختلف و بهبود کارایی واکنش به اضطرار را فراهم می آورد.

    کلیدواژگان: امدادرسانی هوشمند، اینترنت اشیاء، حسگر، سیستم اطلاعات جغرافیایی
|
  • Bhareh Gharedaghy *, Amir Ghasemzadeh Pages 1-18
    Introduction

    Due to its environmental diversity, Iran ranks high in terms of crises caused by natural disasters. Flooding, as one of these disasters, is  causing severe social, economic, health, and environmental damage in many areas due to rapid urban growth and climate change. Therefore spatial forecasting of floods is crucial, as failure to identify flood risk areas in a catchment can exacerbate the destructive effects of floods. Recent advances in remote sensing, geographic information systems, machine learning, and statistical modelling have made it possible to produce highly accurate flood prediction maps. This study aims to predict flood risk areas in the Karun watershed using Sentinel satellite images and a novel ensemble approach with six machine learning models.

    Materials and Methods

    In this study, Synthetic Aperture Radar (SAR) data from Sentinel-1 images were used to identify areas affected by flooding.  First, the dates of heavy rainfall and flooding events in the study area were identified from various sources of information. Subsequently, Sentinel-1 images were obtained from the Copernicus database, representing the area before and after the flood events. The aforementioned data were processed using the SNAP platform. The identification of flood-affected areas was achieved through the application of the thresholding technique. For this purpose, the Normalized Difference Water Index (NDWI) generated from Sentinel-2 images and land cover classes indicating permanent water bodies were employed to determine the threshold for identifying flood-affected areas. The flood polygon layer was converted to a point layer, resulting in a total of 70 flood occurrence points. A review of previous studies and local characteristics identified seven main factors that significantly affect flood occurrence in the region. These factors include the Normalized Difference Vegetation Index (NDVI), Topographic Wetness Index (TWI), slope, flow direction, flow accumulation, distance from the river, and monthly rainfall. Additionally, the Digital Elevation Model (DEM) of the region was obtained from the SRTM database, and the spatial resolution of all factors was aligned with the DEM layer. Subsequently, various machine learning algorithms were employed to develop a combined model that provides more accurate predictions of flood-prone areas. The individual models include the Generalized Linear Model (GLM), Boosted Regression Tree (BRT), Support Vector Machine (SVM), Random Forest (RF), Multivariate Adaptive Regression Splines (MARS), and Maximum Entropy (MAXENT).                    

    Results and Discussion

    The results of this study indicate that the northeast of Aligudarz city, parts of Durud and Azna in Lorestan province, Khademmirza, Shahrekord, and Kiyar in Chaharmahal Bakhtiari province, Dana and Boyer Ahmad in Kohgiluyeh and Boyer Ahmad province, Semirom city in Isfahan province, and the southern border areas of Karun River in Khuzestan province have the highest flood potential in this basin. The performance evaluation of the models revealed that the Random Forest (RF) and Maximum Entropy (MaxEnt) models exhibited the highest accuracy among the individual models. These models, by combining environmental information and flood occurrence data, can produce highly accurate flood susceptibility maps. These maps can serve as crucial management tools to mitigate the adverse effects of floods and prevent development in vulnerable areas.

    Conclusion

    Overall, this study demonstrates that the use of an ensemble approach which combines machine learning models can provide more reliable results in the prediction of flood risk areas. The findings of this research are beneficial for managers and planners, as they can prevent development in vulnerable areas and consequently help reduce financial losses and human damages in the future.

    Keywords: Flood, Karun Watershed, Sentinel Satellite Images, Machine Learning Model, Ensemble Model
  • Faezeh Sadat Hashemi *, Mohammadjavad Valadan Zoej, Fahimeh Yousefi Pages 19-42
    Background and Purpose

    Agriculture serves as the cornerstone of the global economy, providing the main source of food and raw materials for various industries. However, the rising demand for food as a consequence of population growth represents a considerable threat to food security, particularly in light of the limited access to freshwater resources. It is noteworthy that agriculture alone consumes about 70% of the world's freshwater resources, thereby emphasizing the critical need to manage and enhance irrigation efficiency to ensure sustainable food production. Therefore, the management and enhancement of irrigation efficiency are essential. At the core of determining irrigation water requirements lies the concept of actual crop evapotranspiration (ETa), which represents the combined water loss from soil evaporation and plant transpiration. Accurate estimation of ETa is crucial in optimizing irrigation methods, maximizing crop yield, and minimizing water consumption. Various models and tools have been developed to estimate ETa, aiming to provide more user-friendly and efficient methods for farmers and researchers. Given the extensive application of ET estimation models, there is a clear need to focus on the development of accurate and efficient methods for determining this parameter. Thus, this study aims to compare user-friendly ETa estimation methods, including the EEFLUX system, the METRICTOOL tool, and the automatic hot and cold pixel selection method of the SEBAL and METRIC models.

    Materials and Methods

    The Earth Engine Evapotranspiration Flux (EEFLUX) is a version of the METRIC model that operates on the Google Earth Engine platform. METRICTOOL is a new tool in ArcGIS based on the METRIC model, offering enhanced pre-processing capabilities and automatic data identification. This tool reduces computation time by 50% and provides a user-friendly alternative to other existing METRIC model implementation platforms. The automatic hot and cold pixel selection method involves creating a binary map of eligible pixels using a rule-based classifier and a comprehensive search algorithm to identify hot and cold pixels based on defined criteria. To estimate ET using these methods, six Landsat 8 satellite images were utilized during the winter wheat crop planting period at Tehran University farms in Mohammadshahr Karaj. The evaluation of these methods was conducted using alfalfa reference evapotranspiration (ETr) calculated with the FAO-Penman-Monteith method as reference data.

    Results and Discussion

    The Root Mean Square Error (RMSE) values for the EEFLUX system, METRICTOOL, SEBAL, and automatic METRIC tools were determined as 2.45, 0.33, 0.39, and 2.76, respectively. Despite numerical differences, the evaporation and transpiration product of the EEFLUX system showed significant correlations with other methods. For instance, the R2 between ETa estimates from the EEFLUX system and the METRICTOOL tool was found to be 0.91. Although the data from the EEFLUX system may not be precise enough for local studies due to the use of CFSV2 global meteorological data in Iran, they yield acceptable results in large or global-scale studies. The METRICTOOL tool and automatic METRIC model exhibited the highest correlation (R2=0.99) and numerical agreement with each other, with RMSE values of 0.33 and 0.39, respectively, indicating higher accuracy compared to the automatic SEBAL model.

    Conclusion

    The results of the numerical analysis indicate that the automatic hot and cold pixel selection approach can achieve similar accuracy to that of the METRICTOOL tool. This automated approach enhances the efficiency of the model in terms of time and effectiveness, reducing the potential for human error in estimating evapotranspiration for new or inexperienced users, and making these models accessible to the public. Furthermore, EEFLUX data can be utilised for the implementation of management measures in large-scale studies.

    Keywords: Food Security, Evapotranspiration, SEBAL, Metric, EEFLUX
  • Behnam Asghari Beirami *, Mehdi Mokhtarzade Pages 43-64
    Introduction

    In recent years, the use of hyperspectral imagery in various fields of Earth science, especially in remote sensing, has significantly increased due to its rich spectral information. However, the classification of these images and the extraction of useful information from them present variues challenges. These challenges include the effective management of high-dimensional data and the achievement of accurate classification when the number of training samples is limited. One of the primary objectives of the remote sensing scientific community has been to improve the accuracy of image classification, thereby facilitating comprehensive investigations of surface phenomena and changes. In recent years, there has been a growing interest in the use of spatial features as a means of improving the classification accuracy of hyperspectral images. Numerous methods have been suggested for the spectral-spatial classification of hyperspectral images. Currently, research is being conducted with the objective of developing simpler yet more accurate methodologies. The existence of intricate relationships between different bands of the hyperspectral image, as evidenced by research in the field of machine vision, has prompted the development of a novel methodology in current research for modelling the complex relationships between spectral and spatial features within a hyperspectral image. The main objective of this article is to present a novel and efficient approach that combines features derived from weighted local kernel matrices of spectral and fractal characteristics for hyperspectral image classification.

    Materials and methods

     In the present research, hyperspectral images are first subjected to a dimension reduction step. Subsequently, spatial features are generated based on the directional fractal dimension, and these features are further reduced in dimension. In the subsequent stage, the novel features are derived from the weighted local kernel matrices of both the spectral and fractal feature groups. These secondary features consider nonlinear local dependencies between spectral and fractal characteristics, which were not previously considered in other feature generation methods. Ultimately, this stage serves to enhance the accuracy of the classification process. The resulting feature vectors from both groups are then merged, creating a comprehensive vector that is rich in spectral-spatial information for each pixel. Finally, the support vector machine (SVM) algorithm is employed to classify the obtained feature vector and assign labels to each pixel. The experiments conducted as part of this research were carried out on two real hyperspectral benchmark images: one depicting Indian pine and the other the University of Pavia.

    Results and discussion

    The analysis of the outcomes demonstrates the effectiveness of the proposed approach, which incorporates features derived from weighted local kernel matrices of both spectral and fractal characteristics. The classification accuracy of both the Indian Pine and University of Pavia images is enhanced by 20% and 18%, respectively, compared to the exclusive use of spectral features. These findings confirm that incorporating spatial information significantly enhances classification accuracy, particularly in scenarios with limited training samples. Furthermore, the results demonstrate that the proposed method exhibits superior accuracy compared to other studies conducted in this domain.

    Conclusion

    The enhanced performance of the proposed method in comparison to other competitors can be attributed to the incorporation of local non-linear dependencies between both spectral and fractal features, which have not been considered in previous studies. In the future, further improvements to the proposed approach are anticipated. Firstly, efforts will be made to optimise the efficiency of the proposed method in terms of processing time. Furthermore, the accuracy of the method will be enhanced by considering additional fractal features in subsequent steps. These refinements will be pursued in future research endeavours.

    Keywords: Weighted Local Kernel Matrix, Classification, Hyperspectral, Fractal Dimensión, Texture Of The Image
  • Hanieh Zhendeh Khatibi, Afshin Shariat Mohaymany *, Matin Shahri Pages 65-84
    Introduction

    Recently, the use of big data from mobile devices has received considerable attention in transportation studies. The need to do activities is the main inducement for urban trip generation. Furthermore, urban activities and their patterns vary both over space and time. Mobile phone data, as a kind of continuous spatiotemporal data, records the location of people at different times. Therefore such data is suitable for the estimation of urban activity levels and the detection of patterns. In this study, we selected Shiraz as the study area due to its cultural, religious, and tourist significance, as well as the presence of major healthcare centres in the city. The analysis of spatial and temporal patterns of urban trips using continuous spatiotemporal data, such as mobile phone records, can significantly contribute to the improvement of transportation system management, planning, and policy-making for Shiraz.

    Materials and Methods

    The variable under investigation in this study is the activity density within a specific time interval and a defined spatial unit. Activity is defined as the number of individuals who either enter or leave a specific area for a specific purpose. Furthermore, activity density indicates the level of activity within the area’s unit of measurement. To investigate activity density across 321 traffic analysis zones (TAZ) in Shiraz, mobile phone data was collected over a one-week period (from 2021-06-24 to 2021-06-30). Following the implementation of data cleaning and preprocessing techniques,  individuals’ stay point and home locations were identified. The population of each TAZ was estimated by utilising the location of individuals within their respective homes. The estimated population and the real population in each spatial unit were employed to calculate the expansion factor. The activity levels within one-hour time intervals on workdays, semi-workdays, and weekends were estimated using an appropriate expansion factor. To examine the spatial dependency of the variable of interest (density of activities), global and local Moran’s I indices were applied to the aggregated density of activities. The study employed exploratory analysis of urban activities time series to identify the trend of activity level, peak periods, intensity change by time, as well as other relevant temporal characteristics. Additionally, the Standardized Normal Homogeneity Test (SNHT) was employed to identify the change point of activity in time series, which indicates the commencement of the activities.

    Results

    The results not only demonstrated a significant positive spatial autocorrelation of the density of activities within traffic zones (P-Value < 0.001), but also identified the hotspots in the central parts of the study areas. It is notable that the central zones of the city exhibited high activity density, which was influenced by the spatial relationships within the study area. An exploratory analysis of time series revealed variations in activity patterns. These patterns exhibited higher activity levels on workdays compared to semi-workdays, and weekends. The time series observed in the latter half of the semi-workdays exhibited a striking resemblance to that of workdays, yet subsequently exhibited a trend between workdays and non-workdays as the activity level decreased. By examining the time series of activities, it can be observed that the mid-day peak period occurs at 12:00 to 14:00, while the evening peak period occurs at 20:00 to 22:00. Additionally, the lowest level of daily activity was identified between 3 and 6 a.m. The time series uniformity test was employed to ascertain the starting times of activities on workdays and semi-workdays, which were identified as 8:00 am, and on weekends, which were identified as 9:00 am. To validate the detected population and expansion factors and thus the estimated activity level, a spatial correlation between the estimated mobile phone population and the actual population within traffic analysis zones was calculated, which yielded an approximately 82% correlation coefficient. This correlation is statistically significant and therefore acceptable.

    Conclusion

    The results of these analyses could prove beneficial for the formulation of appropriate transportation planning and policy, as well as for the management of population density at hotspots at any time of the day. Furthermore, they could inform the analysis of urban transportation environmental impacts. With the availability of accurate mobile phone data for a range of spatial units, including traffic zones and even entire countries, it is possible to extract a diverse range of urban activity patterns, including those highlighted in this research.

    Keywords: Urban Activity Pattern, Spatial Analysis, Temporal Analysis, Mobile Phone Data
  • Amir Hadian, Mina Moradizadeh * Pages 85-104
    Introduction

    Air pollution represents one of the most important challenges currently facing the majority of countries, largely as a consequence of the advancement of industry and technology. . It is evident that the country of Iran, and in particular  the city of Tehran, is not exempt from this phenomenon. The impact of urban air pollution on the environment and human health has raised increasing concerns among researchers, policy makers, and citizens. In order to minimize  the adverse effects on human health, it is of paramount importance to monitor  air pollution at high temporal and spatial resolution. On the other hand, air pollution measurement stations in the urban areas, despite their high accuracy in pollutant measurement, are not generalisable due to temporal and spatial limitations and point measurement. An alternative solution is the use of remote sensing and satellite data, which is a suitable method for monitoring air pollution due to the optimal cost and wide coverage. Nitrogen dioxide (NO2) and ozone (O3) pollutants are among the most important indicators of air pollution. Therefore, the objective of this research,  is to develop a for the  concentration distribution of these pollutants inTehran with an equal spatial resolution (approximately one kilometer) and a higher level of accuracy than satellite data.

    Material and methods

    In order to model the concentration distribution of two pollutants, NO2 and O3, with appropriate accuracy and resolution, an innovative method based on the kriging interpolation method has been  employed. This modeling method has been developed by simultaneously utilizing the advantages of both pollution measurement station data and high resolution Sentinel-5P satellite data. The former comprises 21 active air pollution measurement stations that have been identified as offering the highest accuracy in measuring parameters in different parts of Tehran. The Google Earth Engine system, has been employed to generate concentration distribution maps of the two pollutants in all 22 districts of Tehran on a monthly basis. Additionally, the system has been used to generate point satellite data of the two pollutants in the spatial coordinates of the ground stations on an hourly, daily and monthly basis. The data was prepared and collected in the Google Earth system over the course of one year, from 1 April 1400 to 1 April 1401. Following the correlation between the satellite data and the ground measurement station data and removal of the bias from the satellite data, different stages of innovative kriging interpolation modeling were employed to model the concentration distribution of the two parameters.

    Results and discussion

    In order to validate the output data from pollutant distribution modeling, 70% of the stations were selected as training data (Train) and 30% of the stations were selected as test data (Test). The points were randomly selected for each month of the year. The final modeling of pollutant distribution was conducted using the training data with the model subsequently validated using the test data. Validation was conducted using both the average error between the predicted data by the model and the station data extracted from the Tehran Air Quality Control Company (in ppb units) and also calculating the RMSE index. The results demonstarte that the average monthly error of the proposed model has decreased from 16.8 to 1.73% for NO2 pollutant and from 21.9 to 2.53% for O3 pollutant compared to the data of the Steinel 5P satellite. Additionally, the root mean square error (RMSE) of this model is equal to 2.79 ppb and 0.86 ppb for NO2 and O3 pollutant, respectively. In a comparable scenario, the RMSE index of the Sentinel 5P satellite output map in relation to the pollution measurement station data for NO2 and O3 pollutants is 10.083 ppb and 6.238 ppb, respectively.

    Conclusion

    Considering that the proposed integrated model has performed very well in modeling the concentration distribution of the two pollutants throughout the year with an accuracy and spatial resolution of almost one kilometer, it is recommended that the simultaneous use of satellite and ground data be employed in the estimation of pollutants.

    Keywords: Air Pollution, Traffic Pollutants, Kriging Interpolation, Sentinel5p Satellite, NO2 Pollutant, O3 Pollutant
  • Aida Ghafoori, Mirsaeed Moosavi *, Mahsa Faramarzi Asl Pages 105-136
    Introduction

    The challenges of urban life, such as the reduction of the environment's role as a space for citizens' presence and physical activity, the increase in vehicle usage, and the resultant inactivity and rise in non-communicable diseases, have raised global concerns about public health. This research aims to evaluate both subjectively and objectively the environmental criteria affecting the general health of residents in three dimensions: physical, psychological, and social, within the Agha Zaman neighborhood of Sanandaj city.

    Material and Methods

    The collection of subjective and objective research data was conducted sequentially. The research was divided into four phases. The first phase involved a subjective qualitative assessment of residents regarding their mental and social health. The second phase involved collecting quantitative subjective data about residents' physical health. The third phase was a quantitative objective assessment of the environment. The fourth phase examined the correlation between the research variables. Subjective data were obtained using a questionnaire, while objective data were gathered using a geographic information system (GIS). Regression analysis in SPSS software was used to analyze the relationship between neighborhood environmental criteria and physical activities, and to determine the relationship between variables. Objective data, such as the type of block arrangement, spatial pattern of the neighborhood, land use layer, and road network, were calculated using GIS and entered into the space syntax index to determine the neighborhood's pedestrianization. Finally, the relationships and effects of environmental criteria on public health were identified using regression analysis in Lisrel software.

    Results and Discussion

    The results showed that environmental comfort and tranquility, with a score of 23, and social interactions and neighborhood culture, with a score of 21, have the greatest impact on mental and social health, respectively. Additionally, environmental criteria such as a mix of uses (score: 5.671), visual and aesthetic qualities (score: 7.961), and special infrastructure for pedestrians and bicycles (score: 8.475) have the most significant impact on physical work, leisure, and sports activities. Consequently, these criteria influence physical health. According to the data, Namaki Street, with a score of 21, has the highest level of connectivity, interconnection, depth, and control within the neighborhood, leading to the highest level of pedestrian circulation.

    Conclusion

    The overall results indicate that due to the direct impact and relationship of urban design environmental criteria on physical activities, and the positive and meaningful relationship between physical activities and general health, it is evident that the general health of residents is related to the environmental criteria of urban design. However, this relationship is mediated by physical activities.

    Keywords: Public Health, Urban Design, Geographic Information System, Space Syntax, Sanandaj City
  • Sadegh Boulaghi, Hanieh Afsahi, Masoud Minaei * Pages 137-158
    Introduction

    In recent years, global population growth and urban expansion have led to significant land use and cover changes. These changes have numerous detrimental consequences, such as increasing surface temperatures, deforestation, desertification, degradation of ecosystem services, biodiversity loss, and threats to food security. Therefore, monitoring and modeling these changes are essential for optimal land management and sustainable utilization of natural resources. Given that the Aras River Basin has undergone significant transformations over time, particularly in built-up land developments, this research focuses on modeling land use/land cover changes in this area.                  

    Materials and Methods

    Initially, land use maps for the region were extracted for the years 2000 and 2020 from the Globeland30 project of the China National Geomatics Center. Subsequently, two maps were prepared to illustrate the potential growth of built-up land based on a land development scenario. This was achieved using advanced decision-making analysis methods based on GIS, including BWM and MEREC. Finally, these two maps, along with the land use maps, were combined to form the input for the CA-Markov model. The modeling process was carried out twice: once using the BWM + CA-Markov combination, and again using the CA-Markov + MEREC combination for the year 2040. 

    Results and Discussion

    The examination of the results demonstrated that in the output of the combined BWM + CA-Markov model, the extent of built-up land increased from 603 square kilometers in 2020 to over 930 square kilometers in 2040. Meanwhile, this figure was approximately 829 square kilometers in the output of the MEREC + CA-Markov model. Furthermore, the final results obtained from the intersection of these combined models also indicated an increase in the extent of this land from 603 square kilometers in 2020 to 930 square kilometers in 2040.

    Conclusion

    The continuous growth of built-up land in this basin can lead to the destruction of environmental resources and pose threats to ecosystems. The findings of this study provide relevant managers with valuable insights for optimal management of future conditions and the provision of necessary infrastructure.

    Keywords: Land Use, Cover, Built-Up Land, Markov Chain, Cellular Automata, Multi-Criteria Decision Analysis (MCDM), Aras River Watershed
  • Reyhaneh Saeedi, Hossein Aghamohammadi *, Aliasghar Alesheikh, Alireza Vafaeinejad Pages 159-178
    Introduction

    Intelligent emergency response systems utilize modern technologies such as the Internet of Things (IoT) to enhance the performance of emergency response units. These systems are designed to improve service quality, reduce costs, and increase monitoring of the emergency response process. Key objectives include optimizing emergency response routes through communication with objects and collecting spatial data. Utilizing IoT-based routing models enables optimizing emergency response routes and enhancing the overall user experience. In essence, these systems leverage data collected by IoT to enhance the emergency response process. Intelligent emergency response systems play a crucial role in improving the efficiency of emergency response units and elevating service levels in emergencies. These systems are readily available and enhance productivity and efficiency in emergencies.

    Materials and Methods

    A spatial data infrastructure has been developed to integrate the system and enhance emergency response efforts, providing critical capabilities for improving emergency medical services. This infrastructure includes a portal that accurately displays the optimal route from the incident location to the medical center on a map, assisting the medical team in quickly and efficiently reaching the injured individual. Additionally, this portal enables the transfer of sensor information, such as vital signs of the injured person, to the physician's mobile phone in the ambulance via Bluetooth. This allows the information to be shared simultaneously for further assessment, enabling quick and accurate assistance in emergencies. This system increases efficiency and speed in responding to emergencies, providing rapid and optimal access to medical services. In summary, this spatial data infrastructure has significantly improved the performance of emergency medical response and facilitated the delivery of enhanced and optimized services in emergencies.

    Results and Discussion

    Medical centers prioritize healthcare and treatment. They employ an online hierarchical weighting model to ascertain these priorities and enhance the efficiency of resource allocation processes. This model helps optimize resource allocation based on real-time health information of the injured individuals. In a trial case, an injured person was successfully treated in District 5 of Tehran. The efficient use of IoT and spatial data infrastructure enabled this medical center to enhance and optimize its healthcare services. These findings underscore the significance of integrating spatial information, medical data, and IoT technology to advance healthcare services and elevate the quality of treatment.

    Conclusion

    Traditional emergency response systems operate primarily based on outdated mechanisms and lack modern technologies, including IoT and spatial data integration. Consequently, these systems may encounter challenges such as delays in dispatching emergency personnel to the incident location and a lack of accurate and rapid patient information. Incorporating modern technologies like artificial intelligence, IoT, and geographic information systems can address the challenges faced by traditional emergency response systems. These technologies enable faster and more efficient crisis responses and assist organizations, such as crisis management agencies, in making better resource allocation decisions during emergencies, thereby improving overall performance. By utilizing data collected through these technologies, emergency organizations can significantly enhance their response to emergencies, reducing time, financial, and human costs. Overall, this new approach to emergency response systems enables better adaptability in facing various crises and improves emergency response efficiency.

    Keywords: Intelligent Emergency Response, Internet Of Things, Sensor, Geographic Information System