Investigation of Characteristics of Alginate Film Containing Probiotic Lactobacillus plantarum for Sliced Sausages Coating

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction

Increasing public awareness of the impact of diet on health has increased the demand for healthy food products, especially probiotics. Probiotics are living and non-pathogenic microorganisms with beneficial effects on the host when consumed on a regular basis  and sufficient amounts (106 cfu/gr or ml). A significant number of probiotics become inactive during various food processes (thermal, mechanical and osmotic stress), storage condition (exposure to oxygen, UV light and low or high temperature) or during interaction with food ingredients. In addition, the breakdown and passage of food through the digestive system can also affect the survival and ability of probiotics to form colony in the intestine. Therefore, it is a challenge for food manufacturers to maintain and deliver live probiotic cells in sufficient quantities via food product. On the other hand, the variety of probiotic food products in the market, especially in Iran, is low and is mainly limited to dairy products, fermented drinks and pickles. Bioactive edible films and coatings are defined as biopolymer-based structures that carry bioactive components such as vitamins, enzymes, peptides, etc, and slowly release them on the food surface during storage. Biopolymers such as polysaccharides, proteins, and lipids are used in the preparation of edible films and coatings. Trapping probiotic bacteria in the structure of edible films and coatings is a new approach that has been proposed to increase the survival of these microorganisms and to develop new probiotic products in the food industry.

Materials and Methods

In this study, an alginate-based probiotic bioactive film containing L. plantarum was fabricated after centrifuging of overnight culture of probiotic bacterium from MRS medium and adding the bacterial cells into film forming solution. The effect of bacterial addition on physical, mechanical and prevention properties of alginate film was evaluated. In addition, the effect of two temperatures 4 °C and 25 °C on the survival of embedded probiotic bacterium in the film structure during one month of storage was also investigated by microbial count assay on MRS agar medium. Then, the model food was covered with probiotic film and the survival of probiotic bacterium during  storage at 4 °C was determined.

Results and Discussion

The results showed that the population of probiotic bacterium declined about 4.61% after drying of alginate film solution. Addition of probiotic bacterium to the alginate film increased the thickness, turbidity, and tensile strength of the film, while had no significant effect on solubility, water activity, Elongation (%) and microstructure of alginate film. In addition, the probiotic film containing bacteria had less Lightness (L*), and moisture content than the control film. Also, the incorporation of L. plantarum in alginate film could decrease the water vapor permeability (WVP) from 0.755 to 4.51 (×10-10 g m-1s-1pa-1). The total color difference (ΔE) of alginate film containing probiotic bacteria compared to control film without probiotic bacteria was 1.1. The SEM images were confirmed the proper and uniform distribution of probiotic L. plantarum cells on the surface of alginate film. The survival percentage of L. plantarum in alginate film after one month of storage at 4 °C and 25 °C was 96.84 and 47.29%, respectively. Also, the population of embedded bacteria in the film structure on the food model (sausage) surface after three weeks storage in refrigerator was in desired level of probiotic products (> 106 cfu / gr).

Conclusion

 The viability of probiotic bacteria after the application of alginate film containing L. plantarum on the surface of food model (sausage) during cold storage remained at the optimal recommended level for three weeks. Therefore, alginate film is recommended as a suitable carrier for probiotic microorganisms to produce new functional products.

Language:
Persian
Published:
Iranian Food Science and Technology Research Journal, Volume:20 Issue: 2, 2024
Pages:
183 to 198
https://magiran.com/p2722553  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!